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Abstract 

This dissertation focuses on the effect of errors in character-based text entry techniques. The effect of errors 

is targeted from theoretical, behavioral, and practical standpoints. This document starts with a review of the 

existing literature. It then presents results of a user study that investigated the effect of different error 

correction conditions on popular text entry performance metrics. Results showed that the way errors are 

handled has a significant effect on all frequently used error metrics. The outcomes also provided an 

understanding of how users notice and correct errors. Building on this, the dissertation then presents a new 

high-level and method-agnostic model for predicting the cost of error correction with a given text entry 

technique. Unlike the existing models, it accounts for both human and system factors and is general enough 

to be used with most character-based techniques. A user study verified the model through measuring the 

effects of a faulty keyboard on text entry performance. Subsequently, the work then explores the potential 

user adaptation to a gesture recognizer’s misrecognitions in two user studies. Results revealed that users 

gradually adapt to misrecognition errors by replacing the erroneous gestures with alternative ones, if 

available. Also, users adapt to a frequently misrecognized gesture faster if it occurs more frequently than 

the other error-prone gestures. Finally, this work presents a new hybrid approach to simulate pressure 

detection on standard touchscreens. The new approach combines the existing touch-point- and time-based 

methods. Results of two user studies showed that it can simulate pressure detection more reliably for at 

least two pressure levels: regular (~1 N) and extra (~3 N). Then, a new pressure-based text entry technique 

is presented that does not require tapping outside the virtual keyboard to reject an incorrect or unwanted 

prediction. Instead, the technique requires users to apply extra pressure for the tap on the next target key. 

The performance of the new technique was compared with the conventional technique in a user study. 

Results showed that for inputting short English phrases with 10% non-dictionary words, the new technique 

increases entry speed by 9% and decreases error rates by 25%. Also, most users (83%) favor the new 

technique over the conventional one. Together, the research presented in this dissertation gives more 

insight into on how errors affect text entry and also presents improved text entry methods. 
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Chapter 1  

Introduction 

The earliest identifiable record on any text entry technique is a typewriter. In 1714, Queen Anne granted a 

British patent to Henry Mill for a Mechanical Transcribing Machine. Since then typewriters evolved 

further, with numerous researchers and designers working on improvements in different parts of the world 

(Cooper, 1983). Typewriters gained worldwide acceptance in the mid-1880s, during the era of global 

industrialization. During that time several typewriters were commercially distributed, including the first 

commercially successful one—the E. Remington and Sons’ Sholes-Glidden Type Writer. Most of these 

typewriters were very similar to the modern version and made an immediate impact on businesses, organizations, 

governments, and even on the social structure. 

Traditionally, typewriters were used only for documenting and transcribing texts. But the development of 

personal computers in the 1970s added a new dimension to the task of text entry (Randell et al., 2003). 

Computers enabled users not only to input and transcribe texts but also to edit, format, and store them in 

electronic formats. Such electronic documents can be accessed anytime and be changed freely with much 

less effort compared to the earlier methods for changing content on paper. In addition, some current text 

editors permit even real-time collaborative text editing over the Internet. 

The telephone was invented in the 1800s, around the same time as modern typewriters. Early telephones 

used manual switchboards and rotary dials. The standard 12-key phone keypad was introduced in the 1960s 

(Deininger, 1960) and provided for encoding of letters. Mobile phones appeared a few decades after that. 

At the beginning, mobile phones were limited to making calls, similar to land phones. The Short Message 

Service (SMS) was introduced in GSM phones in the early 1990s (Silfverberg, 2007). This changed the 

world of text entry once again, as it enabled users to exchange short text messages between mobile phones. 

In 2006, the GSM Association1 estimated a worldwide total of one trillion text messages during the year of 

2005, which exceeded the total number of voice calls. 

                                                             

1 http://www.gsmworld.com  



 

 

2 

The concept of smartphones became popular in the 1990s. Smartphones are mobile phones built on mobile 

operating systems with more advanced computing capability and connectivity than standard “feature” 

phones. The first smartphone was developed by IBM, which they demonstrated in 1992 at the Computer 

Dealers’ Exhibition (COMDEX). In 1994, BellSouth Cellular released a refined version of that prototype 

under the name Simon Personal Communicator (Sager, 2012). Currently, about half of all U.S. mobile 

phone users own a smartphone and about two thirds of the new buyers are opting for one (Nielsen, 2012). 

The introduction of smartphones expanded the horizon of mobile text entry by enabling users to not only 

exchange short text messages but also to take notes, send emails, and even to author full-length documents. 

Nowadays, text entry is not limited to typewriters, computers, and mobile devices. We input text with our 

game controller or television remote control, and on a navigation system or automatic teller machine. We 

input text when we are at the office, at school, at home, and even when we are on the move. We input text 

to do our work, to obtain up-to-date information, for recreational purposes, and to keep up with our social 

life. Although the most popular text entry techniques are full-length and reduced-size physical and virtual 

keyboards, there are also gesture- and voice-based techniques, as well as techniques based on handwriting. 

The task of text entry is complex, as it demands both cognitive and motor skills (Salthouse, 1986). It 

becomes even more complex with recent text entry techniques. Most handheld devices, for instance, use 

either reduced-size or virtual keyboards. The smaller key sizes of these keyboards make text entry more 

difficult and error prone compared to a standard (full-length) Qwerty keyboard (Drury and Hoffmann, 

1992). On such keyboards, the whole fingertip often covers a key completely during text entry and may 

even extend well beyond it. This makes it harder to visually find and physically press the intended key, 

even when users are familiar with the keyboard layout. In a physical mobile keyboard, users can feel the 

keys under their fingers and experience an opposite force when pressing the keys. This feedback often 

helps experienced users to perform better. The absence of this feedback in virtual keyboards makes text 

entry with such keyboards even more challenging (Sears, 1991; Sears et al., 1993). Unsurprisingly, studies 

showed that substitution errors, where wrong keys are pressed in place of the intended ones, are the most 

common type of error committed with both physical and virtual mobile keyboards (Sad and Poirier, 2009; 

Sears et al., 1993). 

Although handwriting and gesturing are considered as relatively natural and fluid modes of interaction, text 

entry with such techniques is slower and more error prone compared to standard and mobile Qwerty 

keyboards. This is mainly due to the lack of reliability in handwriting and gesture recognition technologies 

(Mankoff and Abowd, 1999; Zhai and Kristensson, 2003). Most handwriting and gesture recognizers 
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cannot differentiate reliably between similar characters or gesture pairs and also have difficulties with 

interpreting illegible handwriting and gestures, as do humans. The segmentation problem; i.e., the decision 

of which strokes should be grouped together, poses additional challenges, especially for characters or 

gestures that can be drawn in different ways. Several techniques attempt to avoid these issues by limiting 

the total number of possible gestures or by using a simplified set of gestures (Tappert and Cha, 2007). Even 

with these approaches, reliability in handwriting and gesture-based text entry techniques remains an issue 

(Mankoff and Abowd, 1999). 

As text entry is becoming an integral part of our everyday life, users are naturally drawn to techniques that 

are not only fast but also accurate. Researchers are working on the development of new techniques and the 

optimization of the existing ones to address this need. As text entry requires a close cooperation between 

the users and the techniques, it is essential that new techniques be developed with due consideration of both 

human and system factors. System factors include the input hardware, good algorithms to interpret human 

input, how the system displays feedback, prediction methods and their accuracy, etc. Human factors 

include user comfort, limits on required motor and cognitive skills, training, human error rates, as well as 

any potential adaptation to the system itself. Even the psychology of text entry must be considered. All 

these factors need to be contemplated and integrated to provide users with a better text entry experience. 

While many of these factors have been studied extensively in the past, one noteworthy omission is the 

consideration of both human error behaviors as well as and system errors. The effect of such errors on text 

entry performance has not been very well investigated. This dissertation attempts to overcome this 

shortcoming through experimental studies, modeling of relevant phenomena, and the development of new 

solutions. 

This work focuses only on character-based text entry techniques. Character-based techniques are those that 

involve text entry character by character, not by word or phrase. While the majority of text entry techniques 

are character-based, some techniques, especially techniques built on handwriting or speech recognition, are 

either word- or phrase-based. In general, these techniques do not permit text entry character by character or 

make it fairly laborious. However, many character-based techniques augment text entry with (prefix-based) 

word predictions and auto-correction. These techniques suggest the most probable word(s) based on what 

users are inputting and automatically correct probably misspelled words. Although this feature is most 

popular in mobile keyboards, many desktop applications, such as Microsoft Office and Apache OpenOffice, 

also use basic prefix-based word prediction and auto-correction. When a prediction is accepted, these 

techniques automatically input a chunk of text to complete the last unfinished word, enabling users to input 

more than a character with a single action such as a keystroke or a gesture. Such techniques are considered 
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to be character-based in this dissertation, as the functionality of these techniques is not dependent on the 

prediction and auto-correction features. Instead users are permitted to either ignore or disable said 

prediction without hindering the natural flow of text entry. Henceforth, the term text entry will refer to 

character-based text entry, unless stated otherwise. 

 Motivation 1.1

Almost all text entry user studies are conducted with one of three error correction conditions: none, 

recommended, or forced. In the none condition, participants are not allowed to correct any errors; in the 

recommended condition, correction of errors is recommended if and as participants identify them; and in 

the forced condition, participants are required to correct each and every error, which is usually enforced by 

the system. Section 2.4.1 elaborates on these conditions. This raises the question, if these different error 

correction conditions have a noticeable effect on popular text entry performance metrics. The answer to this 

question is vital for two reasons. First, it indicates if it is reasonable to compare results from different user 

studies that use different metrics and/or different error correction conditions. Second, it helps researchers to 

better understand current text entry metrics and also the relationships between them. Answers to these 

questions constitute a step towards making comparisons between different text entry user studies easier. 

Most users use both character- and word-level correction strategies to correct text entry errors. In character-

level correction an erroneous character is corrected right away, while in word-level correction an error is 

corrected after several other characters were inputted following the incorrect one(s). This latter strategy is 

used when experienced users chunk their input or when they do not verify their input right away. Section 

2.6.5 explains these strategies. Almost all text entry techniques permit users to correct errors with both 

strategies (Grudin, 1983a). Thus, it is important to account for the effect of both strategies when developing 

models for predicting text entry error correction performance. However, currently there is no precise 

characterization of how frequently these two strategies occur in text entry. 

Many models and modeling techniques have been proposed to predict the performance of text entry 

techniques. Several qualitative and quantitative models have also been proposed by psychologists to 

analyze the complex behavior of transcription typing. Section 2.6.8 provides a brief overview of these 

models. Yet error behavior in text entry is not very well understood. All existing models for predicting text 

entry performance account for errors in an indirect way. They either fail to account for both human- and 

system-specific factors or are not general enough to be used with different text entry techniques. Also, most 

of these models are relatively difficult to use, as they require significant amount of expertise, time, and 
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effort to be used in any concrete situation. Therefore, a straightforward and high-level model can be 

beneficial to researchers and practitioners as it can assist them to quickly pre-evaluate and fine-tune a 

technique before conducting empirical studies. 

A phenomenon observed in many human-related domains, including user interfaces, is that most users 

adapt to a non-fatal system error if it remains in the system for long enough. Once users get accustomed to 

a system error, they either actively avoid replicating the sequence of actions that causes that error or start 

treating it as a feature2. This behavior can be indirectly explained through theories of learning. Some of 

these theories assume that learning is a process of replacement, where incorrect response tendencies are 

replaced with correct ones (Newell and Rosenbloom, 1981). Alternative theories describe learning as a 

process of accumulation, where incorrect response tendencies remain constant and correct response 

tendencies increase with practice (Mazur and Hastie, 1974). There are also theories involving the process of 

committing and correcting errors. Section 2.6 provides an overview of some of these theories. Regardless of 

the exact explanation, all learning theories suggest that it is vital to avoid both human and system mistakes 

in order to learn the correct responses. Human errors are well studied and explained in the field of text 

entry, error research, and cognitive psychology. However, how users deal with system errors has not been 

studied in depth. Based on the existing literature, one can hypothesize that the users’ learning rate for 

system errors depends on how error prone a particular system is. Also, users should get used to avoiding an 

erroneous action faster, if it occurs more frequently than others. Unfortunately, no empirical studies have 

been conducted to investigate these likelihoods. 

Almost all recent mobile touchscreen keyboards augment text entry with prefix-based word prediction and 

auto-correction. These methods suggest the most probable word(s) based on what users are inputting and 

automatically correct likely misspelled words. Most of these methods require users to tap on an area outside 

the virtual keyboard to reject or bypass an unintended suggestion. This requires additional mental 

preparation, visual scan time, as well as a finger movement to the target. Due to the small target sizes used, 

users may need several attempts to reject a prediction. This raises the possibility of accidentally selecting 

                                                             

2 Long existing system errors are often jokingly referred to as undocumented features. 

The Original Hacker's Dictionary: http://www.dourish.com/goodies/jargon.html 

Gleick, J. (2002) Chasing Bugs in the Electronic Village. In What Just Happened: A Chronicle from the Information 
Frontier. Pantheon Books, New York, NY, USA, 15-26. 
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the wrong word. All these factors increase the overall cost of error correction with such techniques and 

increase also the total number of word-level error correction episodes. Section 2.2.4.3 elaborates on this issue. 

Eliminating the need for tapping on an area outside the keyboard should theoretically resolve at least some 

of these issues. However, no previous work has explored this possibility. 

Most current touchscreen-based mobile devices do not provide hardware support for pressure detection. 

Several software solutions are available that simulate pressure detection on touchscreens (see Section 

2.2.9). However, none of these solutions are broadly applicable, as they either increase the time to perform 

tasks that involve additional pressure or as they are user specific, mainly due to different finger sizes and 

touch behaviors. Thus, a new approach, which does not suffer from these shortcomings, could be beneficial 

as an alternative modality in text entry or other user interfaces. 

 Contributions 1.2

First, an empirical study was conducted to investigate the effect of different error correction conditions on 

popular text entry performance metrics. The study also explored the main strategies with which users 

correct their errors in short phrases. Results showed that the way errors are handled has a significant effect 

on all frequently used error metrics. Results also showed that about 50% of all errors are corrected at the 

character level; i.e., immediately, while the remaining 50% errors are corrected at the word level; i.e., after 

inputting one or more characters after the erroneous one(s). About 96% of all erroneous characters are 

noticed and fixed between the first and fourth character following the erroneous one. 

Then, a new high-level and method-agnostic model was developed for predicting the cost of error correction 

with a given text entry technique. Towards this, users’ error correction behaviors and strategies were first 

analyzed using data collected from the literature. The emphasis was on how users input text and correct 

errors. More specifically the focus was on the most frequently used error correction operations and the 

probability of making errors during the correction process. Then, based on the findings, a new model was 

developed that can predict the average extra time it requires per character to fix errors with a given 

character-based technique, regardless if a mistake was made on that character or not. The model 

encompasses not only the entry speed and error rate, but also any applicable error correction efforts. Thus, 

it provides designers with a better insight into a technique’s performance and usability. Furthermore, it can 

also be used to pre-evaluate newly developed text entry and error prevention techniques by comparing 

those with the existing ones without performing user studies. The model was validated against quantities 
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derived from the literature and with a user study. Results of the user study showed that the predicted and 

observed costs of error correction correspond well. 

To verify the hypotheses that users’ gradually adapt to the misrecognitions of a faulty gesture recognition 

technique; i.e., a recognizer that frequently misrecognizes gestures, and that this adaptation rate is 

dependent on how frequently they occur, two separate user studies were conducted. In text entry, a 

misrecognition occurs when users input a gesture accurately, but the system fails to recognize it correctly 

and thus outputs a different letter. During the studies, a custom gesture recognition technique was used that 

was intentionally made more error prone. That is, it produced (synthetic) misrecognitions with controlled 

frequency. The intention was to observe if users start to use an alternative method to input the letters that 

are frequently misrecognized by the system. Assuming that there is an alternative gesture set, results of the 

studies confirmed that users gradually adapt to misrecognition errors by replacing error prone gestures with 

alternative ones. Also, users adapt to an error prone gesture faster if it occurs more frequently than others. 

Then, a new hybrid approach was developed to simulate pressure detection on standard touchscreens. The 

new technique combines two existing touch-point- and time-based approaches. It uses the average time and 

touch-point movement for a specific task as baselines. Then, it simulates the detection of extra pressure 

when users take more time and/or their touch-point moves a larger distance compared to the baseline while 

performing that task. A user study investigating two pressure levels, regular and extra, showed that the 

hybrid technique simulates pressure detection more reliably. Results also indicated that users interpret the 

terms regular and extra pressure in a reasonably consistent manner. A separate user study investigated how 

much force is really applied for these two pressure levels. Results showed that regular pressure involves on 

average 1 N and extra pressure on average 3 N force on the surface. 

Finally and to counteract some shortcomings of recent touchscreen virtual keyboards, a new pressure-based 

text entry technique was developed. The new technique does not require tapping outside the virtual 

keyboard to reject an incorrect or unwanted prediction. Instead, it only requires users to apply more 

pressure for the tap on the next target key, which may be any key. The performance of the new technique 

was compared with the conventional approach in a user study. Results showed that for inputting short 

English phrases with 10% non-dictionary words, text entry speed increased by 9% with the new technique 

and error rates decreases by 25%. Also, most users (83%) favored the new technique over the conventional 

one. 
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 Brief Outline 1.3

This dissertation starts with an overall discussion on related work in Chapter 2. The primary focus is on the 

most important character-based text entry techniques, human and system errors, as well as error correction 

behaviors, performance metrics, and prediction models. Then, Chapter 3 investigates the effects of different 

error correction conditions on the most popular text entry performance metrics, outlines the approaches 

used by humans to correct errors, and identifies necessary parameters for the development of a high-level 

method-agnostic model for the cost of error correction. Based on these findings, Chapter 4 develops and 

validates a new model that can predict the costs of error correction for most character-based text entry 

techniques. Subsequently, Chapter 5 sheds light on how users adapt to (synthetic) misrecognitions in an 

error prone unistroke gesture recognizer. Chapter 6 presents and validates a new hybrid technique for 

simulating pressure detection on standard touchscreens. It also introduces and evaluates a new pressure-

based predictive technique that enhances text entry performance by eliminating the need for tapping on an 

area outside the virtual keyboard. Finally, Chapter 7 concludes this dissertation and speculates on future 

research opportunities. 
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Chapter 2  

Related Work 

This chapter starts with a survey of the most popular commercial and academic character-based text entry 

techniques, errors and error correction behaviors, performance metrics, and prediction models. This review 

also identifies human- and system-specific factors related to text entry and error correction. Then, the 

chapter summarizes existing text entry performance data from user studies for the most important techniques 

to facilitate comparisons. This comparison provides a better understanding of where popular text entry 

techniques stand in terms of performance and offers a reference point for new work in the area. 

 Text Entry vs. Transcription Typing 2.1

Text entry research usually compares one text entry technique against another. It also provides guidelines, 

suggestions, and tools for the improvement of the existing or the development of a new technique(s). At 

first glance, it may seem more appropriate to permit participants to freely input whatever they desire during 

a study, as this replicates natural usage and improves the external validity of the study procedure. A few 

recent works attempted to collect data from natural usage (Evans and Wobbrock, 2012; Henze et al., 2012). 

The drawback of this approach is the absence of a source text to compare the transcribed text with to 

determine errors. Also, such data may be contaminated with spurious behavior, such as taking a break or 

performing a secondary task (MacKenzie and Soukoreff, 2003). Thus, the most common procedure is to 

present participants with predetermined short English phrases from a set, such as the one proposed by 

MacKenzie and Soukoreff (2003), one at a time to transcribe. These phrases are composed of on average 

28.61 characters and do not contain numeric and special characters. The corpus also has a high correlation 

with the character frequency in the English language. The phrase set used in experiments is often a subset 

of the whole set. To imitate natural text input behavior as closely as possible, researchers usually instruct 

participants to first read, understand, and memorize the phrase, and then to input it. This approach greatly 

facilitates the measurement of error rates.  

Although the text entry procedure discussed above is somewhat similar to transcription of short English 

phrases, transcription typing research attempts to analyze and understand the complex interaction of the 

perceptual, cognitive, and motoric processes involved in transcription typing. The intention is to contribute 

to the knowledge of the nature of skilled performance in a wide range of cognitive activities (Salthouse, 
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1986). In transcription typing research, participants are usually asked to transcribe a long piece of prose 

using a Qwerty typewriter or keyboard (Salthouse, 1986, 1987). They are not required to read, understand, 

or memorize the to-be-transcribed text prior to typing. Instead, they usually encode the text and translate 

that into a sequence of corresponding manual keystrokes concurrently (Rayner, 1998). Section 2.5 reviews 

transcription typing. 

 Text Entry Techniques 2.2

This section provides a brief overview of the most important text entry techniques, their effectiveness, and 

limitations. It also presents text entry performance data from the literature for those techniques. 

2.2.1 Standard Qwerty Keyboard 

The Qwerty layout has been dominant for both typewriters and computers since the late 1890s (Yamada, 

1980). Currently, it is becoming the dominant layout for handheld devices as well (Arif, 2012). The name 

“Qwerty” comes from the sequence of the leftmost six keys in the layout’s top row. It was designed by 

Christopher Sholes in the 1870s to overcome early typewriters’ mechanical limitations. The problem with 

prior typewriters was that successively actuated levers would easily get jammed with one another. The 

Qwerty layout was arranged in such a way so that frequent bigrams in the English language were located 

far away from each other (Yamada, 1980). After the layout’s invention almost all typewriter manufacturers 

adopted it. Later, the layout was slightly modified by swapping a few characters. It is unknown when 

exactly it took the form of today’s standard Qwerty layout, but most reviews speculate that this must have 

happened well before the 1890s (Silfverberg, 2007; Yamada, 1980). When the layout was embraced in the 

first generation computer terminals, some extra keys were added to produce various computer-related 

operations, such as escape, or modifiers, such as control. The function and the cursor arrow keys were 

added later. In 1971, American Standards adopted the resulting layout as a standard (Noyes, 1983; 

Silfverberg, 2007). There are also several variations of the layout that provide the support for different 

languages. As Qwerty was designed for the English language, which does not have diacritical marks, 

almost all text entry systems were extended to enable users to input characters with accents, typically 

through changing modes. Text entry performance with Qwerty varies vastly based on user expertise. An 

earlier work claimed that first time Qwerty users could achieve up to 20 WPM after 12 hours of proper 

training (Noyes, 1983). Most professional typists can input text at 50-80 WPM, while some even achieve 

above 120 WPM (Ayres and Martinás, 2005). See Section 2.4.3, especially Table 1, for more data. 
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As the Qwerty layout was not designed with a deep consideration of human capabilities or limitations, it is 

often argued that it cannot be the best possible solution for desktop text entry (Silfverberg, 2007). Thus, 

many attempted to design more optimal layouts by rearranging the keys to optimize human hand or finger 

movements. Arguably, the most well-known redesign is the Dvorak Simplified Keyboard (DSK), designed 

by Dvorak and Dealey in 1936 (Dvorak et al., 1936). Yet user studies that compared the performance of 

Qwerty and Dvorak report contradictory results. In some studies, DSK yielded significantly better 

performance than Qwerty, while in many others no such significance was observed (Liebowitz and 

Margolis, 1996). However, most agree that with proper training it is possible to gain comparable entry 

speeds with these keyboards (Strong, 1956; Miller and Thomas Jr., 1977). DSK never achieved commercial 

success. Many attribute this to the theory of path dependence (Liebowitz and Margolis, 1990), which 

claims that the first product that attracts consumers will tend to have an advantage, even over superior 

alternatives that come along later. Others contribute this to a keyboard layout’s steep learning curve 

(Carroll and Rosson, 1987), by referring to the theory of production paradox that states, “The end users are 

willing to learn a new technology if and only if it is useful and lets them get their work done.” 

2.2.2 Mini-Qwerty Keyboards 

Mini-Qwerty keyboards, also known as Thumb and Two-thumb keyboards, are miniature versions of the 

standard Qwerty keyboard. They are typically employed on wireless handheld devices, such as smartphones. 

Mini-Qwerty keyboards were popularized by the RIM BlackBerry smartphone, where a mini-Qwerty 

keyboard was added in 1997 (CBC, 2013). Today, a large number of commercial handheld devices use 

mini-Qwerty keyboards (Arif, 2012). While most of these devices use a reduced-sized Qwerty keyboard 

with some augmentation, a few explore more creative approaches. The Nokia 6800, for instance, has a front 

face that can be flipped open to expose a split mini-Qwerty keyboard, with the screen at the center. Figure 1 

showcases three commercially successful mini-Qwerty keyboards. 

 
Figure 1. Three commercially successful Mini-Qwerty keyboards:  
(a) T-Mobile Sidekick 2 (b) Nokia 6800, and (c) BlackBerry Bold. 



 

 

12 

Previous work has established that keyboard size has a significant effect on entry speed for both novice and 

expert users (Sears et al., 1993). Thus, it is not surprising that mini-Qwerty keyboards yield comparatively 

lower entry speed than the standard Qwerty keyboard. A theoretical model predicted a peak expert text entry 

rate of 61 WPM with these keyboards (MacKenzie and Soukoreff, 2002a). Clarkson et al. (2005) verified 

this in a longitudinal user study, where expert users achieved on average 60 WPM entry speed and 6% error 

rate by the end of the twentieth session. Section 2.4.3 and particularly Table 1, provides more data on this. 

2.2.3 Projection Qwerty Keyboard 

A projection keyboard is a virtual keyboard that projects the image of a Qwerty keyboard (or any other user 

selected layout) on flat surfaces and permits users to input text by tapping on the projected keys. Most of 

these devices use sensor modules to pick up the finger movements over the virtual keys and translate those 

into standard keyboard input data (Roeber et al., 2003; Tomasi et al., 2003). The concept originated from 

IBM in 1995 (Korth, 1995). Their intention was to replace physical input devices by virtual ones so that the 

device can be optimized for the current application and the user’s physiology, while maintaining the speed, 

simplicity, and unambiguity of manual data input. Several companies, such as Canesta, Celluons, Developer 

VKB, Elcom, and Virtual Devices, manufacture projection keyboards. 

After the introduction of the first projection keyboard, many expected it to be quickly adopted by major 

handheld device manufacturers (Hesseldahl, 2002). Yet the technology has failed to achieve the anticipated 

traction in the market. This is may be due to business decisions, as projection keyboard take up valuable 

space in devices and add to production and maintenance expenditures, or usability issues. In a user study, a 

projection keyboard yielded on average 46.6 WPM entry speed and 3.7% error rate, which is substantially 

slower and more error prone compared to the results of its physical counterpart (Roeber et al., 2003). The 

most likely cause for this is the lack of tactile feedback and smaller key sizes (Lewis et al., 1997). Most 

projection keyboards use relatively smaller keys to permit users to use it even on small surfaces. Section 

2.2.4.1 elaborates on the effects of tactile feedback on text entry. 

2.2.4 Virtual (Qwerty) Keyboard 

A virtual keyboard is a software component displayed on screen that enables users to input text on desktop 

and handheld devices, usually with a Qwerty layout. Although a virtual keyboard can be used in desktop 

environments with a mouse or similar devices, it is mostly used with touchscreens. Touchscreen Qwerty 

keyboards are becoming the dominant method for text entry on mobile devices (Arif, 2012; Nielsen, 2012). 
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Until recently, styli and digital pens had been the primary mode for touchscreen interactions. But today’s 

preferred mode , as most manufactures avoided the 

inclusion of styli with a view towards user convenience and simplicity (Tu et al., 2012). Moreover, the 

majority of users also prefer using finger(s) over styli (Arif and Sylla, 2013). Therefore, this section 

emphasizes mostly finger- or touch-based interactions. 

Virtual Qwerty keyboards yield better text entry performance than most other character-based layouts, most 

probably due to skill transfer from familiarity with the standard Qwerty keyboard (MacKenzie et al., 1999). 

The average entry speed and error rate reported for virtual Qwerty on touchscreen mobile phones are 

respectively 23.55 WPM and 12.13% for experienced users (Arif et al., 2011). See Section 2.4.3 and Table 

1, for more data. 

Yet, text entry with virtual keyboards is more difficult (Barrett, 1994; MacKenzie et al., 1999; Sears, 1991) 

and more error prone (Lewis et al., 1997), compared to physical keyboards. This is likely due to smaller 

key sizes and the absence of tactile feedback (Sears, 1991; Sears et al., 1993), similar to the decreased 

performance observed for projection keyboards. Prior studies on typewriters (Lessenberry, 1928) and 

Qwerty keyboards (Grudin, 1983a) revealed that substitution errors, where wrong characters are inputted in 

place of the correct ones, are the most frequent mistakes made by the users. These are usually caused by 

erroneous or unintentional keystrokes (Gong et al., 2005). Substitution errors are even more frequent in 

virtual Qwerty keyboards, where the key sizes are relatively smaller (Sad and Poirier, 2009). On such 

keyboards the whole fingertip often covers a key completely during text entry and may even extend well 

beyond it. This makes it harder to find and press the right key, even when the user is familiar with the 

layout. In a physical keyboard of the same size users can feel the keys under their fingers and experience an 

opposite force when pressing the keys. This feedback helps experienced users to perform better. Due to the 

absence of such tactile feedback in virtual keyboards, erroneous keystrokes are likely more frequent. The 

subsequent section provides further details regarding this. 

Several academic and commercial alternatives are available to enable text entry on mobile devices. Most of 

these techniques utilize speech, handwriting, or gesture recognition and are not character-based. There are 

also a few hybrid techniques that combine Qwerty with gestures. Section 2.2.8.1 discusses a number of 

such techniques. 
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2.2.4.1 Keyboard and Key Sizes and Synthetic Feedbacks 

Sears et al. (1993) conducted two user studies to investigate the effect of keyboard size on entry speed and 

error rate for touchscreen keyboards. They investigated four keyboard sizes from 6.8 to 24.6 cm wide. 

Results showed that entry speed ranged from 10 to 20 WPM for novice and 21 to 33 WPM for experienced 

users from the smallest to the biggest keyboards. This was found to be statistically significant. A significant 

effect of keyboard size on corrected error rate was also observed for novice users. However, no such effect 

was identified for experienced users. 

Colle and Hiszem (2004) investigated the effect of different key sizes on entry speed and accuracy. They 

explored four key sizes: 10, 15, 20, and 25 mm square. Results showed that entry times were longer and 

error rates were higher for smaller keys. However, fference was found between 20 and 25 

mm keys. Recently, Parhi et al. (2006) conducted two user studies to investigate one thumb target pointing 

performance on mobile touchscreen devices. They first examined five key sizes from 3.8 to 11.5 mm and 

then examined five key sizes from 5.8 to 13.4 mm. Results showed that while speed generally improved 

with increasing key sizes, there were no significant differences in error rate between key sizes ≥ 9.6 mm in 

discrete tasks and targets ≥ 7.7 mm in serial tasks. Interestingly, similar investigations with styli have 

drawn different conclusions. A study that compared two virtual Qwerty keyboards, one with 6.4 mm and 

another with 10 mm wide keys, found no significant difference in text entry speed (MacKenzie and Zhang, 

2001). A subsequent study verified and extended this work for keys from 2.6 to 4.4 mm (Sears and Zha, 

2003). Then again, a study that compared key sizes from 2 to 5 mm square found that speed and error rate 

improved with increasing key sizes (Mizobuchi et al., 2002). 

Many researchers also explored whether providing users with auditory and/or synthetic tactile feedback can 

improve touchscreen interaction performance. Lee and Zhai (2009) compared different touchscreen virtual 

keypads with physical ones and showed that for smaller tasks, such as dialing a phone number, virtual 

keypads augmented with synthetic tactile feedback (vibration) can offer a level of performance similar to 

physical keyboards. Hoggan et al. (2008) also used vibration with virtual keyboard to replicate tactile 

feedback. That addition raised text entry performance almost to the level achievable with physical 

keyboards. Kaaresoja et al. (2006) tested a touchscreen device augmented with synthetic tactile feedback in 

four tasks: numeric character input, text selection, scrolling, and drag and drop. Based on their observations, 

they speculated that the addition of tactile feedback has the potential to improve both usability and the user 

experience of such devices. Arif et al. (2010) compared text entry with a virtual Qwerty with and without 

synthetic tactile feedback (vibration). Results showed that augmenting synthetic tactile feedback improves 
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both entry speed and accuracy for novice users. Kaaresoja and Linjama (2005) conducted an interesting 

study on the perception of temporal characteristics of vibration of a mobile device by placing a mobile 

device at different body sites, such as hand, trouser front pocket, and belt case. They argued that the 

duration of the vibration control signal should be between 50 and 200 ms. Following up on this, Koskinen 

et al. (2008) conducted a series of studies with a piezo actuator and a vibration motor to find a tactile click 

that is the most pleasant to use with a finger. Their results were consistent with earlier findings that tactile 

feedback is superior to a non-tactile condition. They also found that the perceived pleasantness depends on 

the characteristics of the tactile feedback parameters that define the wave shape of the stimuli. Their results 

showed that a 46 mA drive current for the piezo actuator and a 16 ms drive time for the vibration motor 

created the most pleasant tactile feedback. In addition, Bender (1999) found that auditory feedback 

improves speed and accuracy in some cases. In a different study Brewster (2002) investigated data entry 

with different key sizes with a range of different types of auditory feedback. Results showed that key click 

 

2.2.4.2 Error Prevention Techniques 

To reduce the effect of substitution errors several error prevention techniques have been developed. The 

default iOS virtual keyboard uses an error prevention technique, called key-target resizing (Pogue, 2007). 

In this approach and instead of the visual representation of the keys, the (invisible) underlying target areas 

are dynamically resized based on the occurrence probability associated with each character. Similar 

algorithms exist in the research literature (Gunawardana et al., 2010). Clawson et al. (2008) proposed a 

different approach. They developed an error prevention technique for mini-Qwerty keyboards where they 

used a trigram frequency table along with the proximity information of the keys and the time between the 

previous and the current keystroke to predict unlikely characters. When the user inputs such an unlikely 

character, they then replace it with a more likely alternative. Their approach makes inputting characters 

flagged as “unlikely” almost impossible. Arif et al. (2010), in contrast, proposed a timeout- and a pressure-

based error prevention technique. Using a bigram character frequency table, this approach predicts 

improbable next characters based on the previously entered ones, and then make those characters harder to 

input. In order to input an improbable character, one then has to either tap-hold the corresponding key for a 

predetermined period with for the timeout approach, or has to tap on that key with extra pressure with the 

pressure-based approach. Results of a pilot study indicated that the new techniques reduce errors 

significantly for novice users when augmented with synthetic tactile feedback (vibration). However, a 

subsequent study failed to observer such effects for expert users (Arif and Stuerzlinger, 2013). 
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2.2.4.3 Predictive Techniques 

Nowadays, almost all virtual keyboards augment text entry with prefix-based word prediction and auto-

correction. These approaches suggest the most probable complete word(s) based on what users are typing 

and even automatically correct a likely misspelled word. Figure 2 (a) shows word prediction on the iPhone 

keyboard, where the most probable word completion “education” is suggested based on the input (or 

prefix) in a prediction bubble. When a word is suggested, one can perform any of the following operations. 

1. Accept the prediction by tapping on the Space key. This will replace the partially inputted word 

with the suggested one, followed by a Space character. 

2. Reject or bypass prediction for that word by tapping on the prediction bubble. This will remove 

the prediction bubble along with the predicted word. 

3. Ignore the prediction and continue typing. Here, the system will keep updating the suggestion 

based on the prefix. For instance, if the user has input “edu” and continues typing even though a 

prediction is shown and reaches “educab”, the system will update the suggestion to “educable”, 

which is the most probable word that starts with that prefix. When the system fails to find a match 

based on the prefix, it often assumes that a spelling mistake has been made. It then suggests the 

closest most likely word. For instance, if one inputs “educc”, the system will assume that the user 

made a spelling mistake and thus will continue suggesting the word “education”. 

Some virtual keyboards suggest more than one word. The default Android keyboard, for example, suggests 

the two most probable words in a prediction panel placed above the keyboard. With this approach users can 

again perform any of the above-mentioned actions. See Figure 2 (b). Here, the system highlights the word 

“education” to signify that this word will be used for auto-completion when the Space key is pressed. To 

reject or bypass this suggestion, one has to tap either on the typed text (in the left of the panel) or the 

second most probable word (elsewhere in the panel). Thus, both Apple and Android platforms require users 

to tap in an area away from the virtual keyboard to reject or bypass an incorrect prediction. Once a 

prediction is rejected, both keyboards will suggest completions again only after the user inputs a Space 

character or tap on the Return or Backspace keys. 
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Figure 2. Default word prediction systems on: (a) Apple iOS and (b) Android OS. 

Although word prediction is almost exclusive to mobile touchscreen devices, several desktop applications 

provide limited prefix-based word prediction and auto-correction. Microsoft Office and Apache OpenOffice, 

for example, suggest the most common nouns (month and day names) and autocorrect common substitution 

errors such as “teh” to “the”. Figure 3 illustrates word prediction on these two applications. 

 
Figure 3. Default word prediction on two desktop applications:  

(a) Microsoft Office and (b) Apache OpenOffice. 

Many schemes have been proposed for accurate word prediction, such as bigram, trigram, or n-gram letter 

and word frequencies, grammar rules, adaptive dictionaries, geometric pattern matching, word 

classification, and language models. Garay-Vitoria and Abascal (2006) offer an inclusive survey of the 

major schemes used in text prediction. Prediction schemes are however outside the scope of this work as 

the primary focus of this work is on error behaviors and not on prediction algorithms.  

2.2.5 Standard 12-Key Mobile Keypad 

Although gradually becoming obsolete in more developed countries (Arif, 2012; Nielsen, 2012), text entry 

in handheld devices worldwide is still largely dependent on the standard 12-key mobile keypad (Gupta et 

al., 2013), especially in the developing world. The standard mobile keypad consists of a 3×4 grid with ten 
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numeric (0-9) keys and an asterisk (*) and a hash (#) key. See Figure 4. Typically, the letters of the English 

language are mapped to (eight of) the numeric keys. The asterisk and hash keys are usually used for special 

functions. This layout was standardized in the 1990s (Silfverberg, 2007). Text entry with the standard 

mobile keypad is challenging due to the underlying key ambiguity, as more than one character is assigned 

to each key. This problem is universal as most languages have more than twelve characters. To overcome 

this, text entry with mobile keypads requires the use of special techniques such as Multi-tap and T9. 

Multi-tap is the one of the dominant techniques used with the standard 12-key keypad (James and Reischel, 

2001). To input text with Multi-tap, users have to press a key repeatedly until they get the intended 

character. Then, they can proceed to the next character, providing that it is on a different key. If not, they 

have to either wait for a timeout period for the system to accept a character on the same key or have to 

press a predetermined kill button, usually the hash (#) key. Multi-tap was preceded by a similar technique 

introduced by Casio Computer Company in their Databank wristwatches3 in the 1980s. Casio Databank 

keypads were laid out in a 4×4 grid, where thirteen keys contain two English letters each and the remaining 

three are for special functions. Similar to Multi-tap, Casio Databank users had to press the keys once or 

several times to get the intended character. 

Text entry with Multi-tap is usually slower and more error prone compared to mini- and virtual Qwerty 

keyboards. An empirical study reported an average 8 WPM entry speed and 28.64% error rate for Multi-tap 

for experienced users (Lyons et al., 2004b). See Section 2.4.3, especially Table 1, for more information. 

 
Figure 4. A standard 12-key mobile keypad. 

T9 is the most popular predictive technique for the standard mobile keypad. It was primarily developed by 

Tegic, now acquired by Nuance Communications, and later was licensed to several major mobile phone 

manufacturers (Dunlop and Crossan, 2000). T9 addresses the issue of key ambiguity by predicting probable 

                                                             

3 http://www.casio.com/products/watches/databank 
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input words based on dictionary and grammar rules stored in the device. The idea is to reduce keystrokes 

by allowing users to press a single key per character instead of repeated keystrokes. T9 assumes that for 

most key sequences there is only one or a limited number of words that match the exact sequence. Thus, 

upon a keystroke, the technique attempts to match the key sequence with the phone’s dictionary for the 

probable input word. When multiple words match the input sequence, it also uses statistical data on word 

frequency to suggest the most common word first. Thus, T9 can often suggest accurately what the user is 

attempting to input. However, if an intended word is not in the dictionary, users have to input the word by 

resorting to Multi-tap in a different dialogue. T9 is usually faster than Multi-tap. A user study reported 20 

WPM entry speed and 8.4% error rate for experienced users (James and Reischel, 2001). See Section 2.4.3, 

especially Table 1, for more information. 

Many alternative methods have been proposed to address the standard mobile keypad’s key ambiguity, 

mostly from academic circles. TiltText, for example, attempts to resolve key ambiguity using the orientation 

of the phone (Wigdor and Balakrishnan, 2003). It requires users to tilt the phone in one of four possible 

directions to select a character on a specific key. A user study revealed that with sufficient practice this 

method yields 23% faster entry speed than Multi-tap (Wigdor and Balakrishnan, 2003). It was however 

73% more faulty than Multi-tap. Another approach, known as Two-key, uses multiple modes for different 

character groups (Butts and Cockburn, 2002). To input text with this technique, users first have to select a 

character group by pressing a key, and then have to press 1, 2, 3, or 4 to input the intended character within 

that group. A study reported an average 5.5 WPM entry speed for novice users for Two-key. LetterWise is 

a predictive technique that predicts characters instead of words—it predicts the most probable next character 

based on the previous character using bigram and trigram tables (MacKenzie et al., 2001). It rearranges the 

character sequence on each keys dynamically based on the prediction. A user study reported that with 

sufficient practice this method could yield up to 36% faster entry speed compared to Multi-tap, without 

compromising accuracy (MacKenzie et al., 2001). Tanaka-Ishii et al. (2003) and Trnka et al. (2009) 

provide excellent reviews of other, less popular predictive text entry techniques. 

 
Figure 5. Two commercial alternates to the standard 12-key keypad:  

(a) Fastap or OneTouch and (b) A variant of reduced-Qwerty. 
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Many also attempted to redesign the mobile keypad layout. Pavlovych and Stuerzlinger (2003) designed a 

new layout called Less-tap that rearranges the characters within each button according to their frequency so 

that the most common characters require only a single keystroke. They conducted a user study to compare 

Less-Tap to Multi-tap, where the new technique exhibited 9.5% faster entry speed than Multi-tap. A 

commercial technique, called Fastap, formally known as OneTouch, adds two additional function keys and 

places all the letters of the English language in alphabetic order intertwined between the keys (Levy, 2002). 

See Figure 5 (a). This layout contains more than forty keys in a small space, which makes it harder to master. 

However, many claim that with proper training it can be faster than Multi-tap (Sirisena, 2002). Another 

commercial layout, called reduced-Qwerty, overlaps a Qwerty layout with the standard mobile keypad. In 

this layout, characters are ordered in a typical Qwerty fashion but the keys contain one or more characters. 

There are several variations of this layout available in the market. Figure 5 (b) illustrates one such layout. 

2.2.6 Chorded Keyboards and Keyers 

Chorded keyboards and keyers are designed to accommodate the idea of wearable computers. Wearable 

computers provide computational support when users’ hands, voice, eyes, arms, and/or attention are 

actively engaged with the physical environment. In this environment, such technologies enable users to 

input text with only one hand, leaving the other hand free to do other tasks. This is usually accomplished 

via key combinations on smaller keysets. Therefore, to input text with a chorded technique, users have to 

press multiple keys simultaneously. This is called a chord. The difference between a chorded keyboard and 

a keyer is that keyboards use physical boards to arrange the keys, typically in rectangular layouts, while 

keyers arrange the keys in clusters adapted to the human hand. The most popular chorded keyboard is the 

HandyKey Twiddler (Lyons et al., 2004a, 2006). Twiddler has twelve keys, similar to the standard mobile 

keypad, arranged in a grid with three columns and four rows on the front. Each row is usually operated by 

one of the four fingers of a hand. Disregarding the cords in which no buttons are pressed there are in total 

255 possible combinations or chords (Lyons et al., 2004a). Twiddler fits almost completely inside one hand, 

which allows users to input text almost invisibly (Lyons et al., 2004b). Twiddler is not fully character-based 

as it provide shortcut chords for frequently used words, such as “or” and “the”, and common word endings, 

such as “ing” or “ed”. 

Text entry with chording techniques is difficult from both a cognitive and a physiological standpoint. It also 

takes significant training time to master the chords. Thus, it was never widely adopted. A user study reported 

46.3 WPM entry speed and 7% error rate for experienced Twiddler users (Lyons, 2004a). See Section 2.4.3 

and Table 1, for more data. 
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Several additional chorded techniques have been proposed. Gopher et al. (1985, 1988) designed a two-

handed chorded keyboard that connected two separate keyboards in a lateral tilt arrangement, which were 

mirror images of one another. Wigdor and Balakrishnan (2004) developed a chorded version of Two-tap 

(see Section 2.2.5), called ChordTap, by adding three additional keys on the back of a mobile phone. With 

this technique, users have to make a between-group selection using the standard mobile keypad with their 

dominant hand and then a within-group selection using the chorded keys with their non-dominant hand. 

Several other chording keyboards are (or were) available in the market such as the 7-key TextWriter, the 7-

key Infogrip BAT, the 6-key Microwriter, the 12-key WriteHander, the 6-key GKOS, the 20-key FrogPad, 

the 7-8-key Chordite, the 12-key EkaPad, and the 10-key IN10DID. Amongst the keyers, the most popular 

one is called the Septambic Keyer4. It is made of three thumb and four finger keys grouped in a cluster for 

being handheld. It allows for in total 47 distinct combinations of keystrokes and chords. 

2.2.7 Handwriting Recognition (HWR) 

Handwriting is considered a relatively natural and fluid mode of text entry with a long history. Moreover, 

handwriting is learned in early school years (Plamondon and Srihari, 2000). Recently, there has been an 

increase in handwriting-based text entry on handheld devices. However, handwriting recognition of standard 

characters is relatively slower and more error prone than text entry with Qwerty (Zhai and Kristensson, 

2003). This section briefly discusses online or real-time handwriting recognition, which is one of the 

dominant text entry methods on smartphones (Tappert and Cha, 2007). This section excludes offline 

handwriting recognition methods that deal with static information, as such methods fall into the area of 

Optical Character Recognition (OCR). 

Online handwriting recognition techniques recognize the writing as users write the text. Unlike offline 

techniques, online techniques capture dynamic information during writing, which includes the number and 

the order of the strokes, the direction of the writing of each stroke, and the speed of writing within each 

stroke. This enables the recognizer not only to recognize characters more accurately but also to differentiate 

between similarly shaped characters and numbers. To record such dynamic information, special equipment 

is required to record the writing process. For instance, a tablet digitizer accurately records the x-y coordinate 

data of stylus movement for each point in time. Recent devices that support pen-based interactions, such as 

                                                             

4 http://wearcam.org/septambic 
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the HP Compaq Tablet PC and the Microsoft Surface, attempt to imitate paper-like interaction by 

combining a digitizer and flat display. This permits use of the same surface to both record the input and to 

show the output, typically as printed characters, which provides immediate visual feedback. Many devices 

also support multi-touch interaction. Some provide the hardware support for detecting stylus pressure, such 

as the Bamboo Pen & Touch Graphic Tablets. 

The first commercial online handwriting recognition technique was sold with the Apple Newton device in 

1993 (Silfverberg, 2007). The technique was considerably advanced as it accepted whole words, permitted 

cursive writing, and could recognize common shapes and symbols. Besides, the system was adaptive. That 

is, it learned a user’s writing styles. However, the recognition accuracy was not very good (Silfverberg, 

2007). Although a second version was limited to recognition of printed text to improve accuracy, the 

method was still not reliable enough. This has likely contributed to the commercial failure of the Apple 

Newton as well as the competitors’ solutions. 

 
Figure 6. Different characters with the same shape. 

One fundamental property of handwriting is that differences between different characters are more 

significant than differences between different writing of the same character (Tappert et al., 1990). Most 

handwriting recognition techniques attempt to make the most of this. However, and especially in English 

handwriting, this property holds within the subcategories of uppercase, lowercase, and numeric characters, 

but not across them. Figure 6 illustrates how different handwritten characters can have the same shape, 

where the digit “1”, uppercase “I”, and the lowercase “L” are drawn the same way, also the lowercase “O” 

and the digit “0”, if size is disregarded. Also, there are different kinds of handwriting, such as hand-printed 

discrete characters used in boxes while filling out forms, spaced discrete characters, run-on discrete where 

characters can touch and overlap, pure cursive writing, and a mixture of discrete and cursive writing 

(Tappert et al., 1990; Tappert and Cha, 2007). Figure 7 illustrates this. Most real-time techniques are quite 

accurate with the first three kinds of handwriting. Yet recognition the accuracy for the latter two kinds 

highly depends on the writing style and the regularity and clarity of the writing (Tappert and Cha, 2007). 

Especially in illegible handwriting, it is difficult to distinguish between similar character pairs, not only for 

recognition systems but also at times for humans. Additionally and as many characters can be drawn with a 

single or multiple strokes, it is often hard for a recognizer to decide which strokes should be grouped 

together. This is known as the segmentation problem. It is also hard to separate a character-within-

character. For example, an uppercase “B” drawn with two strokes can be mistakenly recognized as number 
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“13”. In addition, different users can draw the same character in different stroke numbers, directions, and 

orders. The total number of possible variations for a multistroke character can be calculated using the 

following equation. 

𝑛𝑛! ∗ 2  Equation (1) 

Here, n is the total number of strokes. Using this equation, a two-stroke character such as “T” has in total 8 

writing variations: 2! =	
  2 for different stroke orders multiplied by 22 = 4 for two possible stroke directions 

for each stroke. This, combined with the segmentation and character-within-character problems, poses a 

big challenge to online handwriting recognition. 

 
Figure 7. Different kinds of English handwriting: (a) Hand-printed discrete characters, (b) Spaced discrete 

characters, (c) Run-on discrete characters, (d) Pure cursive, and (e) A mixture of discrete and cursive writing. 

Many approaches have been used to overcome these issues. Some techniques combine preprocessing with 

writer control, where users first have to draw all characters in predefined boxes to allow the recognizer to 

group strokes within a box. Then that information is used to detect the completion of character input 

(Tappert and Cha, 2007). The stroke code method, in contrast, takes a more drastic measure by recognizing 

each stroke immediately after the stylus is lifted (Tappert et al., 1990), making it very similar to unistroke 

gesture recognizers. Some techniques permit only a single way of drawing each character in an attempt to 

avoid stroke variations (Plamondon and Srihari, 2000). Others permit multiple variations, but attempt to 

train users to the recognizer by providing them constant visual feedback through a trial and error method 

(Plamondon and Srihari, 2000). Some recognizers disregard stroke sequences and directions by reordering 

the strokes and stroke directions into a normalized form such as from left to right and top to bottom 

(Tappert et al., 1990). Above all, most recent handwriting recognition techniques attempt to understand the 

context and meaning of the text by using the syntax and semantics of the language, as humans do (Tappert 

and Cha, 2007). Hidden Markov models (Hu et al., 1996), support vector machines (Myers, 1980), machine 

learning (Lee et al., 2012), parallelized machine learning (Bothe et al., 2010), neural network (Liwicki et 

al., 2012; Pittman, 1991), recurrent neural network (Graves et al., 2009), and many other approaches have 

been used with language models for this purpose. Consequently, most recent handwriting recognition 

techniques work at the word- or phrase-level, which is outside the scope of this work. 
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2.2.8 Gesture Recognition 

Gesture-based text entry techniques have been widely explored and aim to increase the speed and accuracy 

over free-form handwriting methods (Tappert and Cha, 2007). However, gesture recognition is different 

from handwriting recognition in many ways. Handwriting recognition techniques attempt to support natural 

handwriting, while gesture recognition techniques avoid such natural usage to improve recognition 

accuracy and entry speed. Thus, almost all gesture-based techniques limit user behaviors by allowing only a 

single way of drawing each character to avoid segmentation and other handwriting recognition related 

problems (Buxton, 1995). 

Many gesture-based techniques use simplified sets of characters (often called shorthand) that are drawn 

with a single stroke. Although recognition of traditional shorthand has also been investigated by Leedham 

et al. (1984), it is technically difficult. Moreover, there are not many people who have the skill of writing 

shorthand, and the skill is not easy to acquire (Buxton, 1995). Thus, designers have proposed alternative 

shorthand notations that do not suffer from these disadvantages. 

 
Figure 8. Unistrokes gesture alphabet. Here, a dot represents the start point of a stroke. 

Goldberg and Richardson (1993) developed one such technique, Unistrokes. Their intention was to design a 

character set that could be entered in an eyes-free manner on portable systems with a stylus. The Unistrokes 

alphabet is shown in Figure 8. As the name suggests, each character is represented by a single stroke mark. 

Although it is necessary for the users to master the gestures, this usually takes about an hour due to the 

clever use of mnemonic structures (Buxton, 1995). These are illustrated in Figure 9. 
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Figure 9. Unistroke mnemonics. Here, a dot represents the start point of a stroke. 

To reduce the learning effort, Palm Computing introduced the Graffiti character set in 1997 (Isokoski, 

1999). Similar to Unistrokes, Graffiti characters are entered with single strokes. Yet Graffiti is relatively 

easier to learn, as the strokes are closer to their printed counterparts. Graffiti is illustrated in Figure 10 (a). 

Due to a legal issue, Palm later replaced the original Graffiti characters with Graffiti 2. It is claimed that the 

latter is an improved version as it offers more intuitive entry of accents and umlauts and also more 

consistent entry of special characters (Költringer and Grechenig, 2004). This version requires some 

characters such as “I”, “K”, “T”, and “X” to be drawn with two strokes, illustrated in Figure 10 (b). 

 
Figure 10. (a) Graffiti and (b) Graffiti 2 unistroke gesture alphabet. 

Here, a dot represents the start point of a stroke and the numbers represent stroke sequences. 

Castellucci and MacKenzie (2008) conducted a longitudinal user study to compare Unistrokes and Graffiti. 

Interestingly, they did not find any significant difference between these techniques’ entry speed, correction 

rate, and preparation time. Average entry speed and accuracy with Unistrokes were 15.8 WPM and 16%, 

while with Graffiti were 11.4 WPM and 26%. Unistrokes were executed faster than Graffiti due to their 
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short and simple strokes, which complements a prior study conducted by Cao and Zhai (2007). See Section 

2.4.3 and Table 1, for more information. 

 
Figure 11. The Minimal Device-independent Text Input Method (MDTIM) unistroke gesture alphabet.  

Here, a dot represents the start point of a stroke. 

Isokoski (1999) observed that four directional gestures, namely up, down, left, and right, are easy to make 

with most pointing devices. Based on this observation, he developed a new unistroke gesture set, called the 

Minimal Device-independent Text Input Method (MDTIM). The set optimizes the mapping between the 

gestures and the letters of the English language. Thus, more frequent characters have shorter strokes. Figure 

11 illustrates this set. Isokoski (1999) evaluated MDTIM with a number of pointing devices and reported 

7.5 WPM entry speed for novice users with touchpads. This method shares a drawback with Unistrokes, in 

that gestures are different from their printed counterparts. Therefore, it requires practice to learn the 

gestures and to achieve fast entry speed (MacKenzie and Soukoreff, 2002b). 

 
Figure 12. Jot gesture alphabet. Here, a dot represents the start point of a stroke and the numbers represent 

stroke sequences. 

Jot System, a relatively recent technique, was developed by Communication Intelligence Corporation and 

licensed by Microsoft in 1998. This technique is very similar to Graffiti 2 as it includes almost all Graffiti 2 

gestures. Besides, it includes several variants of the gestures to accommodate handwriting-like drawing. 
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See Figure 12. Jot also allows users to indicate drawing preferences for some characters. That is, it permits 

users to select alternative methods for drawing some characters (MacKenzie and Soukoreff, 2002b). 

Based on Kurtenbach and Buxton’s (1993) marking menu, Venolia and Neiberg (1994) developed a new 

gesture-based text entry technique, called T-Cube. T-Cube is similar to a two-tier pie menu system. The 

main level contains nine starting points and the second level contains eight pie menus, each representing a 

particular character. To input a given character, users first have to select an entry in the main menu to 

activate the second level menu that contains the intended character. Then, they have to flick the stylus into 

the direction where the intended character is situated in said second level menu. See Figure 13. T-Cube 

displays the menus only when users hesitate, in an attempt to reduce visual scan time. In a pilot 

longitudinal study, the technique yielded a maximum entry speed of 21.2 WPM. Interestingly, a linear 

increase in entry speed over time was observed during the pilot, which showed no indication of leveling 

off. Based on this Venolia and Neiberg (1994) speculated that although difficult to learn, reasonably fast 

entry speeds can be achieved with T-Cube with sufficient practice.  

 
Figure 13. T-Cube pie menu structure. Here, first the user selects an entry from the main level menu. In the 

second level menu he/she then flicks the stylus into the direction of the intended character, here “m”. 

Wobbrock et al. (2003) designed a unistroke technique called EdgeWrite for users with motor impairments. 

The EdgeWrite alphabet was designed to maximize users’ ability to guess, illustrated in Figure 14. Unlike 

other gesture-based techniques, it requires users to input characters by traversing the edges and diagonals of 

a square hole overlaid over the character drawing area of a PDA. Figure 15 illustrates the character and 

digit drawing areas of a PDA. Then a gesture is recognized not through patterns, but based on the sequence 

of corners that are hit. This technique has been explored widely with different devices such PDA, touchpad, 

displacement and isometric joysticks, trackball, and a 4-key keypad (Wobbrock and Myers, 2005). A study 

established the technique to be more accessible to users with motor impairments. Individuals who cannot 

input text with Graffiti or similar techniques can do the same with EdgeWrite. Also, the stylus version has 

been shown to be significantly more accurate than Graffiti, for both able-bodied and motor-impaired users 

(Wobbrock et al., 2003; Wobbrock, 2006). 
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Figure 14. EdgeWrite unistroke gesture alphabet. Here, a dot represents the start point of a stroke. 

MacKenzie et al. (2006) developed a technique called Unipad, which augments Unistrokes with word and 

suffix completion and word prediction. After two hours of practice the technique exhibited 11.6 WPM and 

0.90% error rate in a user study. A recent technique, called UniGest, allows users to input text with 

pointing devices without a display (Castellucci and MacKenzie, 2008). Based on a web-based study, an 

upper-bound text entry rate of 27.9 WPM was predicted for the technique. Another technique, called Ubi-

Finger, provided a wearable interface for sensory control of mobile computers with finger gestures (Tsukada 

and Yasumura, 2002). 

 
Figure 15. A Palm Tungsten E PDA that allows users to input text using Graffiti 2. 

Choi et al. (2005) proposed a number of gesture-based interaction methods using a tri-axis accelerometer 

for handheld devices. They tested their approach with a mobile phone that achieved an average recognition 

rate of 97% for a set of eleven gestures. Kallio et al. (2003) developed an accelerometer-based gesture 

recognition system for a small wireless sensor-box. They evaluated the new technique with gestures of four 

degrees of complexity. Results showed that with at least ten training vectors, the accuracy rate for complex 

gestures could reach up to 95%. Patel et al. (2004) designed a sensor-based authentication mechanism for 

mobile devices, which uses simple shaking to authenticate with the public infrastructure. The technique has 

not been evaluated in a user study. 

Gesture-based text entry received a lot of attention during the late 1990s. Nowadays, techniques such as 

virtual and mini-Qwerty have become the dominant method for text entry on mobile devices, also because 

most users are familiar with the layout (Arif, 2012; Tappert and Cha, 2007). Another potential reason for 
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the failure of gesture-based techniques to achieve widespread usage is their lower accuracy rate. Empirical 

comparisons between Graffiti 2 and a virtual Qwerty keyboard showed that text entry with Graffiti 2 is 

significantly slower and more error prone, even when augmented with word prediction (Költringer and 

Grechenig, 2004). A high accuracy rate is imperative for acceptance as a study showed that a gesture 

recognition technique has to be at least 97% accurate for its users to find it useful (LaLomia, 1994). 

Another study showed that mobile users abandon a gesture-based technique and start using an alternate 

interaction mode when error rates reach about 40% (Karam and schraefel, 2006). 

Although gesture recognition is relatively easy compared to online handwriting recognition, most gesture 

recognition techniques still suffer from recognition errors (Mankoff and Abowd, 1999; Shilman et al., 

2006). Yet recent advancements in pen, finger, and wand gestures with user interfaces for mobile, tablet, 

large display, tabletop, televisions, interaction without display, and desktop computers5 (Cao and 

Balakrishnan, 2003; Guimbretière et al., 2001; Gustafson et al., 2010; Hinckley et al., 2004; Juhlin and 

Önnevall, 2013; Karlson et al., 2005; Wilson and Shafer, 2003) have increased the overall gesture 

ambiguity. Gesture recognition has been a topic of interest to experts in artificial intelligence and pattern 

matching (Shaffer, 1975a; Rubine, 1991). The original Unistrokes gesture recognizer recognized a 

performed gesture by comparing it with a list of ordered x-y coordinates for each gesture (Goldberg, 1997). 

This method is dependent on the relatively wide separation of the Unistrokes gestures to differentiate 

between the gestures. The mechanism of the original Graffiti gesture recognizer has not been publicly 

disclosed due to its proprietary nature. However, some speculate that it is very similar to the original 

Unistrokes recognizer (Hertzberg, 2011). 

So far, at least Hidden Markov Models (Anderson et al., 2004; Cao and Balakrishnan, 2005; Sezgin and 

Davis, 2005), neural networks (Pittman, 1991), dynamic programming (Myers, 1980), and machine 

learning (Lee et al., 2012), have been tried to enhance the performance of gesture recognizers. No 

fundamentally superior approaches have been identified. Others have proposed easy and efficient 

implementation methods for gesture recognition. These techniques recognize gestures through templates 

based on basic geometry and/or trigonometry and usually do not require feature selection or training 

examples (Li, 2010b; Wobbrock et al., 2007). Various error prevention and error correction methods have 

also been proposed (Mankoff and Abowd, 1999). As the primary focus of this work is on interaction and 

                                                             

5 https://www.leapmotion.com 
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not on algorithms, this document does not discuss gesture recognition and gesture error prevention 

algorithms in more detail. Nonetheless, the most frequent types of human and system errors and the most 

frequently used methods for handling such errors are discussed in Section 2.6.7. 

2.2.8.1 Tap and Gesture Hybrids 

In a 1995 patent Buxton and Kurtenbach (1995) proposed a hybrid of tapping and linear stroke gestures for 

a standard Qwerty virtual keyboard. With this approach users can tap on the characters, flick to input 

Space, Backspace, and Enter, or employ an upwards flick on a key to input uppercase letters. This patent, 

however, does not report on the results of empirical studies. Since then, many works have made similar 

proposals for pen-operated keyboards (Hashimoto and Togasi, 1995; Isokoski, 2004; Masui, 1998). 

Isokoski (1995) developed a model of expert performance for gesture-augmented keyboards and assessed 

its performance on a realistic text entry task for several keyboard layouts in a user study. Results showed 

that gestures are significantly slower at first, but can match the speed of tap-based stylus text entry after 

twenty sessions. A commercial product, called the Hot Virtual Keyboard6, also augments virtual Qwerty 

keyboards with gestures. The keyboard uses the right, left, up and down-left flick gestures for Space, 

Backspace, Shift, and Enter, respectively. Similarly, the default keyboards on Windows Mobile 5 and 6 

utilized the right, left, and up flick gestures for Space, Backspace, and Shift, correspondingly. 

Zhai and Kristensson (2003) developed a tap and gesture hybrid, where unistroke gestures are assigned for 

the most frequent words based on users’ finger movement pattern on a keyboard. With this method, users 

effectively draw gestures for known words, and tap on the keys for the unfamiliar ones. However, in a later 

version they removed the necessity to alternate between gestures and taps by improving the system to 

handle a significantly larger set of words (Kristensson and Zhai, 2004). A similar method, called Swype7, 

also permits users enter words as gestures. It uses shape recognition to identify the words, as the resulting 

stroke forms a shape that is very often unique to the intended word. In case the shape matches multiple 

words, users can select the desired word from a short list. These techniques are word-based as a whole 

word is input at once. When there is no match in the words list user can still resort to tapping (Zhai and 

Kristensson, 2012). Both of these techniques are somewhat similar to an earlier word-based technique 
                                                             

6 http://hot-virtual-keyboard.com 
7 http://www.swypeinc.com 
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called Cirrin. The Cirrin interface arranges all characters inside the perimeter of an annulus. To input each 

character, users have to move the stylus into and out of the appropriate sector of that annulus (Mankoff and 

Abowd, 1998). 

Li et al. (2011) developed a reduced virtual keyboard that combined the three rows of the Qwerty layout 

into a single line with eight keys. It uses word frequencies to disambiguate between similar key sequences. 

To select a less probable word from the prediction list, one has to flick up on the keyboard. Similarly, to 

input Space, Backspace, or Enter, one has to tap on the bezel, or stroke to the left or to the right on the 

keyboard, respectively. Recently, Arif et al. (2014) developed a virtual Qwerty keyboard that replaced the 

Space, Backspace, Shift, and Enter keys with strokes—straight-line gestures swiped to the right, left, up, 

and diagonally down-left, respectively. 

2.2.9 Pressure in Text Entry 

Previous work has investigated pressure-based user interfaces and widgets and a few attempts even focus 

on pressure-based text entry. Most of this work has targeted tabletops or large displays, not handheld 

devices. The main reason for this is technological, as most current handheld devices do not provide 

hardware support for measuring pressure. Nonetheless, recent work (Graham-Rowe, 2010; Nurmi, 2009) 

indicates that future handheld devices may include pressure-sensitive touchscreens as an alternative 

interaction modality. A recent opaque touchpad already provided support for detecting pressure levels8. 

Herot and Weinzapfel (1978) were the first to investigate the ability of humans to apply pressure and torque 

on a computer screen. Buxton et al. (1985) also explored touch-sensitive tablet input. They concluded that 

although pressure control can be difficult in the absence of button clicks or similar tactile feedback, it is a 

promising research area. Srinivasan and Chen (1993) asked users to control the force applied to a sensor 

under several different conditions as well as different forms of feedback. Their results suggest that pressure 

interfaces need to have a force resolution of at least 0.01 N to make full use of human capabilities. 

Mizobuchi et al. (2005) examined the properties of force-based input on a mobile device by asking 

participants to apply force in ten predetermined target levels, ranging from 0 N to 4.0 N, with and without 

visual feedback. They suggested that pressure levels from 0 N to 3.0 N are comfortable and controllable for 

                                                             

8 http://www.synaptics.com/solutions/products/forcepad 
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users. Ramos et al. (2004) investigated users’ ability to perform discrete target selection tasks by varying a 

stylus’s pressure, with full or partial visual feedback. Based on their results they proposed a number of 

pressure widgets for tasks such as zooming and selection. Similar to Mizobuchi et al. (2005), they 

concluded that users could control 6 ± 1 pressure levels without major difficulties. In a different avenue of 

work, Zeleznik et al. (2001) proposed an alternative to binary button switches on mice. With their 

technique one had to press a button lightly to activate its first state and harder to activate its second state. 

Likewise, Cechanowicz et al. (2007) permitted users to apply different pressure levels on a mouse to 

simultaneously control cursor position and multiple levels of discrete selection modes in desktop tasks. 

They, however, did not evaluate their techniques. 

2.2.9.1 Pressure-Based Text Entry Techniques 

In contrast to the above-mentioned findings, text entry studies showed that pressure does not work well in 

this domain (McCallum et al., 2009; Wang et al., 2009), as techniques with more than two pressure levels 

suffer from relatively higher error rates. McCallum et al. (2009) introduced a pressure-based text entry 

technique for the standard 12-key mobile keypad that utilizes three pressure levels. Their technique yielded 

a higher expert text entry rate compared to Multi-tap, but at the expense of an 8.7% error rate (compared to 

a baseline of 2.8%). Tang et al. (2001) developed a three-key chorded keyboard with three pressure levels, 

which also suffered from high error rates, ~18% after three trials. Hoffmann et al. (2009) modified a 

standard Qwerty keyboard to use key resistance to prevent errors. The keyboard used dictionary, grammar, 

and context tests to identify probably erroneous characters, and then made those keys harder to press by 

increasing the resistance. This reduced erroneous keystrokes by 87% and correction attempts by 46%, on 

average. Similarly, Dietz et al. (2009) developed a pressure sensitive physical keyboard that used different 

pressure levels to enable users to delete one character or a word using the Backspace key. However, they 

did not evaluate their work. Jong et al. (2010) presented a tactile input method for pressure sensitive 

keyboards based on the detection and classification of pressing movements on already pressed-down keys. 

Yet they too did not compare their techniques with conventional ones. Brewster et al. (2009) presented 

several pressure-based techniques to switch between uppercase and lowercase letters on a virtual Qwerty 

keyboard. Some of their techniques were more accurate and faster than the standard Shift key. Arif et al. 

(2010) proposed a pressure-based error prevention technique that used bigram character frequencies to 

predict improbable characters based on the previous one and made those characters harder to input. In order 

to input an improbable character, users had to press the corresponding key with extra pressure. They 

conducted a pilot that showed that the technique might reduce error significantly for novice users, when 
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augmented with synthetic tactile feedback (i.e., vibration). Yet a later investigation indicated that it is 

relatively more difficult for expert users to adapt to this text entry technique (Arif and Stuerzlinger, 2013). 

2.2.9.2 Pressure Detection Simulation 

As most current touchscreen devices do not provide the hardware support for measuring pressure, two 

software-level solutions are widely used to simulate pressure detection: time-based and contact-area-based. 

The time-based approach simulates pressure detection based on the assumption that it takes more time to 

perform a task when extra pressure is applied (Cechanowicz et al., 2007; Ramos et al., 2004). It records the 

average time it takes to perform a task and uses that as a baseline. When users take more time than the 

baseline, the system deduces that extra pressure is applied. Several mobile applications such as Doodle 

Buddy9 and TypeDrawing10 use this to simulate pressure detection. The limitation of this approach is that it 

forces users to take additional time to perform all tasks that require extra pressure. Yet Raisamo (1999) 

showed that many tasks take almost the same time regardless of the level of pressure applied. Thus, a time 

threshold for pressure may unnecessarily slow users down. 

The contact-area-based approach relies on the fact that human fingertips spread wider over the point of 

contact when additional pressure is applied (Buxton, 2013). It simulates pressure detection by mapping 

changes in a finger’s contact area to changes in pressure. More specifically, this approach maps different 

finger areas to different pressure levels, and simulates pressure detection based on that. Forlines and Shen 

first implemented this approach (2005), although they did not elaborate on their implementation. Benko 

et al. (2006) provided a detailed explanation of this method. They also demonstrated that this technique 

does not require per-user training and discussed how it could be used in touchscreen user interfaces. Boring 

et al. (2012) investigated pressure detection simulation using the thumb’s contact area. The fundamental 

limitation of this approach is that finger contact areas depend not only on finger sizes and the amount of 

pressure applied, but also on different touch types such as vertical and oblique (Wang et al., 2009). Thus, 

this approach cannot be used with all users or with styli. Besides, most current touchscreens provide touch 

coordinates, not contact area information. 

A few studies identified that touch-points or coordinates move with extra pressure (Wang et al., 2009; 
                                                             

9 http://blog.pinger.com/tag/doodle-buddy 
10 http://www.storyabout.net/typedrawing 
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Ramos et al., 2004; Boring et al., 2012). Wang et al. (2009) argued that most touch interactions are oblique 

due to common practices in handing physical objects and to accommodate the long fingernails of some users. 

They observed that touch-points shift more when users apply extra pressure. Boring et al. (2012) also reported 

this. A similar tendency was observed for stylus-based interactions as well (Ramos et al., 2004). However, 

none of these works evaluated the usability and performance of this idea. Chapter 6 explains how this 

approach can simulate pressure detection on touchscreens and establishes how this idea performs in practice. 

Hwang and Wohn (2012) proposed an alternative pressure detection simulation technique. They monopolize 

a mobile device’s built-in microphone to detect five different pressure levels by mapping different sound 

amplitude to different pressure levels. In a pilot study, their technique was found to be 94% accurate. Heo 

and Lee (2011) used acceleration data along the z-axis to differentiate between two pressure levels on 

touchscreens. In an investigation, their technique was about 90% accurate. However, it is unclear whether 

this technique will work in mobile settings or not. Watanabe et al. (2012) used the light transmitted by 

touchscreens onto fingernails to estimate the level of force applied, which changes the intensity of the 

transmitted light. However, this method is impractical in many situations, as it requires a light sensor 

attached to be attached to one’s fingernail(s). 

 Text Entry Performance Metrics 2.3

User study data on text entry performance reported in the literature varies widely due to the use of different 

performance metrics and study designs (Soukoreff and MacKenzie, 2003; Wobbrock, 2007). Therefore, it 

is sometimes difficult to compare studies or to extract meaningful average text entry speeds and error rates 

from this body of work. This makes it hard for designers and researchers to use and apply these results and 

prevents the synthesis of a larger picture. 

This section discusses the most common performance metrics employed in text entry user studies. In the 

literature different notations and terms are used to describe various concepts. For better understanding and 

to avoid confusion the metrics are here discussed using the following notations, which were formerly 

introduced by Soukoreff and MacKenzie (2003). 

 Presented Text (P) is what participants had to enter, and |P| is the length of P. 

 Transcribed Text (T) is the final text entered by the participant, and |T| is the length of T. 

 Input Stream (IS) is the text that contains all keystrokes performed while entering the presented 

text, and |IS| is the length of IS. 
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 Correct (C) is the number of correct characters in the T. 

 Incorrect Not Fixed (INF) is the number of unnoticed errors, in other words, incorrect characters, 

in the T. 

 Fixes (F) are keystrokes in the input stream that are edit functions, such as Backspace and Delete, 

modifier keys, such as Shift, Alt, and Ctrl, or navigation keys, such as the arrow keys, and mouse 

movements and clicks. 

 Incorrect Fixed (IF) keystrokes are those in the input stream that are not editing keys (F), but 

which do not appear in the final T. 

 Minimum String Distance (MSD) is the minimum number of operations needed to transform T into 

P, where the operations are insertion, deletion, or substitution of a single character. 

Simplifications for INF and C were also introduces by Soukoreff and MacKenzie (2001, 2003), which 

consider only the size of the P and T: 

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑃𝑃, 𝑇𝑇)  Equation (2) 

𝐶𝐶 = 𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃 , 𝑇𝑇 − 𝑀𝑀𝑀𝑀𝑀𝑀(𝑃𝑃, 𝑇𝑇) Equation (3) 

2.3.1 Entry Speed 

Calculating the text entry rate for various input methods is usually straightforward. The Words per Minute 

(WPM) metric is the most frequently used empirical measure of entry speed (Yamada, 1980). A few other 

metrics exist, such as Gestures per Second (GPS), Adjusted Words per Minute (AdjWPM), and Keystrokes 

per Second (KSPS). But these are rarely used. 

2.3.1.1 Words per Minute (WPM) 

Word per Minute (WPM) measures the time it takes to produce certain number of words. WPM does not 

consider the number of keystrokes nor the gestures made during the text entry. It depends only on the 

length of the transcribed text. WPM is defined as the following. 

𝑊𝑊𝑊𝑊𝑊𝑊 =
𝑇𝑇 − 1
𝑆𝑆

  ×  60  ×  
1
5

 Equation (4) 

Here, S is time in seconds measured from the first key press (or a similar action such as stylus tap) to the 

last, including backspaces and other edit and modifier keys. The constant 60 is the number of seconds per 
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minute, and the factor of one fifth accounts for the length of a word as it has been common practice to 

regard an “average” word as five characters, including spaces, numbers, and other printable characters 

(Yamada, 1980). Note that S is measured from the entry of the very first character to the last, which means 

that the entry of the first character is never timed, which is the motivation for the “–1” in the numerator of 

Equation (4). While this assures accuracy, some other researchers omit this factor. 

2.3.2 Error Rate 

Unlike text entry rate, measuring the error rate is complex. There are many error rate metrics that are used. 

None of them is perfect as all of the metrics face difficulties distinguishing errors corrected during text 

entry and those that remain as uncorrected errors. This section discusses the five most frequently used error 

metrics. 

2.3.2.1 Error Rate (ER) 

The “raw” Error Rate (ER) is traditionally calculated as the ratio of the total number of incorrect characters 

in the transcribed text to the length of the transcribed text. 

𝐸𝐸𝐸𝐸 =   
𝐼𝐼𝐼𝐼𝐼𝐼
|𝑇𝑇|

×100 Equation (5) 

  

2.3.2.2 Erroneous Keystrokes (EKS) 

The Erroneous Keystrokes (EKS) error rate is only meaningful when the final transcribed text does not 

contain any error. This metric simply measures the ratio of the number of erroneous keystrokes (EKS) to 

the length of the presented text. EKS is thus almost equivalent to ER. The difference is that the first usually 

keeps count of erroneous keystrokes at run time, while the latter considers only the errors that remained in 

the transcribed text. 

𝐸𝐸𝐸𝐸𝐸𝐸 =   
𝐸𝐸𝐸𝐸𝐸𝐸
|𝑃𝑃|

×100 Equation (6) 

ESK can also be derived using the equation: EKS = INF + IF. 
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2.3.2.3 Keystrokes per Character (KSPC) 

Keystrokes per Character (KSPC) is the ratio of the length of the input stream to the length of the 

transcribed text. 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 =   
|𝐼𝐼𝐼𝐼|
|𝑇𝑇|

 Equation (7) 

2.3.2.4 Minimum String Distance Error Rate (MSDER) 

The Minimum String Distance Error Rate (MSDER) metric was introduced based on the application of the 

Levenshtein string distance statistic (Levenshtein, 1966) to the problem of matching (incorrect) input to the 

target text (Soukoreff and MacKenzie, 2001). The algorithm yields the minimum distance between two 

strings (MSD) defined in terms of edit operations such as insertion, deletion and subtraction of a single 

character. The idea is to find the smallest number of operations to transform the transcribed text to match 

the presented text, and then to calculate the ratio of that number to the larger of the lengths of the presented 

and transcribed texts. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =   
𝑀𝑀𝑀𝑀𝑀𝑀(𝑃𝑃, 𝑇𝑇)
𝑀𝑀𝑀𝑀𝑀𝑀( 𝑃𝑃 , |𝑇𝑇|)

×100 Equation (8) 

Here, 𝑀𝑀𝑀𝑀𝑀𝑀  (𝑃𝑃, 𝑇𝑇) is the minimum string distance between the presented and the transcribed text. Later, an 

improved version of the MSD error rate was proposed (Soukoreff and MacKenzie, 2003), which uses the 

ASCII representation of the differences between the presented and transcribed text to address the disparity 

in lengths. 

2.3.2.5 Total Error Rate (TER) 

Total Error Rate (TER) is a unified method that combines the effect of accuracy during and after text entry 

(Soukoreff and MacKenzie, 2003). This metric measures the ratio of the total number of incorrect and 

corrected characters to the total number of (initially) correct, incorrect, and corrected characters. In other 

words, it computes the ratio between the effort of error correction and the total effort to enter the text. 

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝐼𝐼𝐼𝐼𝐼𝐼 + 𝐼𝐼𝐼𝐼

𝐶𝐶 + 𝐼𝐼𝐼𝐼𝐼𝐼 + 𝐼𝐼𝐼𝐼
×100 Equation (9) 
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2.3.2.6 Limitations of the Error Metrics 

The two most widely used error metrics, ER and MSDER, can be considered to be almost equivalent 

(Soukoreff and MacKenzie, 2003). However, both do not consider the cost of error correction but only the 

errors still present in the transcribed text. This can make these two metrics misleading. For instance, if all 

the erroneous character were corrected in the transcribed text, these two metrics will yield results 

equivalent to having entered the text error free from the start. In other words, they do not consider the effort 

that was put into correcting errors. EKS is useful when the transcribed text is error free, which is usually 

achieved by forcing participants to correct each error. This metric does not always show an accurate 

picture, especially when the transcribed text was not error free, as it cannot differentiate between corrected 

and uncorrected errors. KSPC considers the cost of committing errors and fixing them, but does not provide 

any way of separating these two quantities. Nevertheless, there is an (approximately) inverse relationship 

between KSPC and (ER, EKS, and MSDER). Yet there is no obvious way of combining these measures 

into an overall error rate (Soukoreff and MacKenzie, 2003). TER, on the other hand, not only measures 

error rates but also takes the effect of accuracy into account. This provides more insight into the behaviors 

of the participants. This makes TER the most appropriate error rate metric at the present time. 

 Text Entry Performance 2.4

This section presents a survey of user study data collected for the most important text entry techniques. 

Several precautions were taken while collecting data to ensure the integrity of the final results. All articles 

that do not provide complete data about their user studies, use unorthodox performance metrics, or do not 

follow standard empirical user study procedures were ignored. If an article used unusual metrics, but 

provided enough data to permit a conversion into standard metrics, it was included with the converted 

results. Pilot studies, studies that involved languages other than English, numerical and/or special characters, 

and studies that were carried out with less than six participants per technique were also disregarded. This 

eliminated a substantial number of publications from consideration. Yet it emphasizes that one cannot 

perform cross-study comparison without some guarantee on the validity of the results and without solid 

comparison points. Most of the considered articles conducted the studies using MacKenzie and Soukoreff’s 

short English phrases (MacKenzie and Soukoreff, 2003) as presented text. However, one study used both 

SMS-style and short English phrases (James and Reischel, 2001). Another study was conducted using 

phrases with and without numerical and special characters (Költringer and Grechenig, 2004). Only the later 

data points were considered in this survey. All the surveyed articles used WPM to measure entry speeds, 

while ER, EKS, MSDER, and TER were used to measure error rates. 
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Although most of the surveyed articles included the data required for additional analysis, in a few cases that 

had to be derived from other provided data. While experimenting on mobile keypads, James and Reischel 

(2001) did not measure errors with any standard metric. They provided the total number of errors in each 

dataset but did not elaborate on how they counted errors. For instance, assuming that “ant” was discovered 

as “atn” in the transcribed text, it is not clear if that was counted as a single or multiple errors. However, 

ER was recalculated from their paper via Equation (5). Some articles did not provide the average or 

individual session entry speed and error rates and/or the standard deviations in numerical form but in 

graphs (Kim et al., 2013; Lyons et al., 2004a, 2004b). In those cases, the data were manually measured from 

the graphs. McDermott-Wells (2006) did not provide average error rates, but presented exhaustive data on 

different sessions. Recalculating average error rates from the session data was straightforward. 

2.4.1 Error Correction Condition 

This survey revealed that text entry user studies are conducted with one of three error correction conditions. 

1) None: In this condition, participants are not asked or allowed to correct their mistakes. Thus, the 

final transcribed text contains only uncorrected errors. Usually ER or MSDER metrics are used to 

measure error rates. 

2) Recommended: In this condition, participants are recommended to correct errors as they identify 

them. Therefore, the final transcribed text contains both corrected and uncorrected errors. TER is 

usually used to measure error rates. 

3) Forced: Here, participants are forced to correct each error to keep the transcribed text error free. 

Thus, the final transcribed contains only corrected errors. TER is usually used to measure error 

rates, although some researchers keep a separate count of erroneous keystrokes to measure EKS. 

2.4.2 User Expertise 

The survey also indicated that most studies recruit participants at the following skill levels. 

1) Novice users of a technique are those who never used the technique prior to the study or had a very 

limited exposure to it, i.e., rarely used it. 

2) Experienced users are those who use the technique frequently, i.e., almost every day, but have not 

had professional training on it. In this survey, results from the final session of a longitudinal study 

are considered as experienced user performance. 
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3) Expert users of a technique are those who use the technique professionally. Examples are 

professional typists and/or those that have undergone professional or extensive training for the 

technique. 

4) In addition, some studies recruit participants indifferent of their skill levels. Here, such participant 

groups are labeled as mixed. 

2.4.3 Results 

The following table presents the complete result of the survey. 

Table 1. Text entry technique performance from literature. 

Technique Participant Correction 
Condition 

Error 
Metric 

Speed Error Rate Ref. Method Type Modal # Expertise WPM (SD) % (SD) 

Physical 
Qwerty 

Standard Both hands 
8 Novice None ER 20 (×) 3.2 (×) 5 

11 Experienced None EKS 64.8 (17.3) 1.8 (0.9) 12 
6 Expert None ER 75.03 (10.6) 0.95 (0.54) 5 

Mini Two-thumb 14 Novice Recommended TER 31.72 (7.0) 6.12 (3.46) 4 
14 Experienced Recommended TER 60.03 (8.40) 8.32 (4.13) 4 

Virtual 
Qwerty 

Projection Both hands 11 Novice Recommended EKS 46.6 (9.8) 3.7 (2.4) 12 
Phone Stylus 7 Mixed Recommended TER 21.59 (6.42) 7.34 (9.09) 11 

Phone Two-thumb 12 Novice Recommended TER 15.92 (6.6) 10.38 (8.2) 2 
12 Experienced Recommended TER 23.55 (8.5) 12.13 (0.1) 1 

Tablet Both hands 10 Experienced Recommended TER 39.52 (2.5) 10.28 (1.1) 7 

Twiddler Version 1 One hand 10 Novice Recommended TER 17.5 (6.2) 4.35 (1.67) 10 
5 Experienced Recommended TER 46.3 (11.7) 6.94 (1.73) 9 

Gesture 

Graffiti Stylus 10 Novice Forced EKS 4.0 (1.44) 26.2 (2.6) 3 
10 Experienced Forced EKS 11.4 (3.6) 26.2 (2.6) 3 

Graffiti 2 Stylus 12 Novice None TER 9.24 (×) 19.35 (×) 8 

Unistrokes Stylus 10 Novice Forced EKS 4.1 (2.18) 43.4 (16.4) 3 
10 Experienced Forced EKS 15.8 (4.02) 16.3 (10) 3 

EdgeWrite Stylus 10 Novice None MSD 24.0 (2.2) 2.8 (3.4) 13 

Phone 
Keypad 

Multi-tap One thumb 
10 Novice None ER 7.98 (×) 16.05 (×) 6 
10 Experienced None ER 7.93 (×) 28.64 (×) 6 

T9 One thumb 
10 Novice None ER 9.09 (×) 10.86 (×) 6 
10 Experienced None ER 20.36 (×) 8.4 (×) 6 

Here, “#” means the total number of participants, “Ref.” means references, and “×” means data were not provided in 
the literature. References: 1 (Arif et al., 2011), 2 (Arif et al., 2010), 3 (Castellucci and MacKenzie, 2008), 4 (Clarkson 
et al., 2005), 5 (Grudin, 1983a), 6 (James and Reischel, 2001), 7 (Kim et al., 2013), 8 (Költringer and Grechenig, 2004), 
9 (Lyons et al., 2004a), 10 (Lyons et al., 2004b), 11 (McDermott-Wells, 2006), 12 (Roeber et al., 2003), and 13 (Wob-
brock and Myers, 2005). 
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 Perceptual, Cognitive, and Physical Aspects 2.5

Psychologists have often used the task of transcription typing (see Section 2.1) with the standard Qwerty 

keyboard for the purpose of analyzing human skilled behavior. They have been attracted to transcription, 

because this task has several advantages over other forms of skilled activities (Salthouse, 1986). One 

particularly noteworthy advantage is that the number of practitioners is very large compared to other skilled 

activities, making it easier for researchers to locate moderately sized samples of users at different skill 

levels (see Section 2.4.2). Also, transcription typing behavior can be partitioned into separate and easily 

measured responses, such as keystrokes, taps, stylus taps, and strokes, which makes it relatively easier to 

analyze. Finally, as the task involves complex interactions of perceptual, cognitive, and physical processes, 

a better understanding of transcription typing may contribute to the knowledge about the nature of highly 

skilled performance in a wide range of cognitive activities (Salthouse, 1986). 

This section discusses empirically established phenomena observed in transcription typing with standard 

Qwerty typewriters and keyboards, referred to as typing in this section for brevity. These phenomena were 

identified by various researchers and later summarized by Gentner (1983), Salthouse (1986, 1987) and 

colleagues (1987), John (1988, 1993), and Wu and Liu (2004a, 2004b). This dissertation categorizes these 

phenomena into five groups: basic behavioral (1-13), units of typing (14-19), errors (20-24), skill learning 

(25-32), and vision (33-36) phenomena. Although these phenomena were observed in skilled transcription 

typing of long English prose, a better understanding of these may assist to understand the process of other 

forms of text entry as well (O’Brien et al., 2008). 

2.5.1 Basic Behavioral Phenomena 

This section discusses thirteen basic behavioral phenomena (1-13) observed in skilled transcription typing. 

1) The average interkey intervals are only a fraction of the typical choice reaction time. The median 

interkey interval in normal transcription typing is 177 ms, while the median interkey interval in a 

serial two-alternative choice reaction time task is 560 ms (Salthouse, 1984a). 

2) Typing is slower than reading. In a study, two different user groups averaged 246 and 259 WPM 

when reading and 60 and 55 WPM when transcription typing, respectively (Salthouse, 1984a). 

3) There is no relationship between typing skill and degree of comprehension of material that has 

been typed. In other words, these two are independent (Salthouse, 1984a). 
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4) Typing rate is independent of word order. Numerous user studies showed that typing rates are 

almost the same for random words and meaningful texts (Fendrick, 1937; Grudin and Larochelle, 

1982; Hershman and Hillix, 1965; Larochelle, 1983; Olsen and Murray, 1976; Salthouse, 1984a; 

Shaffer, 1973, 1978; Shaffer and Hardwick, 1968; Shulansky and Herrmann, 1977; Terzuolo and 

Viviani, 1980; Thomas and Jones, 1970; West and Sabban, 1982). This is not unusual as in 

transcription typing users are not required to read, understand, or memorize the to-be-transcribed 

text (Rayner, 1998). 

5) Typing is slower with random character order. Many user studies showed that the average interkey 

interval increases when the linguistic structure of the presented text degrades; i.e., becomes less 

structured or more random (Fendrick, 1937; Grudin and Larochelle, 1982; Hershman and Hillix, 

1965; Larochelle, 1984; Olsen and Murray, 1976; Salthouse, 1984a; Shaffer, 1973; Shaffer and 

French, 1971; Shaffer and Hardwick, 1968, 1969a; Terzuolo and Viviani, 1980; Thomas and 

Jones, 1970; West and Sabban, 1982). 

6) Typing is slower with restricted preview. Numerous user studies indicated that the typing rate 

decreases substantially when preview to the presented text is restricted (Coover, 1923; Hershman 

and Hillix, 1965; Salthouse, 1984a, 1984a, 1985; Salthouse and Saults, 1987; Shaffer, 1973; 

Shaffer and French, 1971; Shaffer and Hardwick, 1970). 

7) Successive alternate hand keystrokes are faster than successive same hand keystrokes. Several 

user studies indicated that successive keystrokes from the alternate hands are usually 30 to 60 ms 

faster than successive same hand keystrokes (Coover, 1923; Fox and Stansfield, 1964; Gentner, 

1981, 1982, 1983a; Grudin and Larochelle, 1982; Kinkead, 1975; Lahy, 1924; Larochelle, 1983, 

1984; Oslry, 1983; Rumelhart and Norman, 1982; Salthouse, 1984a; Shaffer, 1978; Terzuolo and 

Viviani, 1980). 

8) More frequent character pairs are inputted faster than the less frequent ones (Dvorak et al., 1936; 

Grudin and Larochelle, 1982; Salthouse, 1984a, 1984b; Terzuolo and Viviani, 1980). 

9) Interkey intervals are independent of word length. In other words, there is no systematic effect of 

word length on interkey intervals (Salthouse, 1984, 1986; Shaffer, 1978; Sternberg et al., 1978). 

10) In continuous normal typing, the first keystroke in a word is usually slower than the subsequent 

keystrokes (Oslry, 1983; Sternberg et al., 1978; Terzuolo and Viviani, 1980). A number of studies 

reported that the interval before first keystroke in a word takes approximately 20% longer than the 

intervals between later keystrokes (Salthouse, 1984a, 1984b). 

11) The time for a keystroke is dependent on the specific context in which the character appears. Thus, 

the interkey interval for a particular character is not constant. Instead the interval depends on the 

characters that precede and (possibly) follow it (Salthouse, 1984b; Shaffer, 1973, 1978; Terzuolo 
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and Viviani, 1980). This phenomenon is not unexpected considering phenomena 7, 8, and 10 and 

Fitts’ law, which states that the time required to rapidly move to a target area is a function of the 

distance to the target and the size of the target (MacKenzie, 1991). 

12) A concurrent activity does not affect expert typing speed and accuracy. However, Shaffer (1975b) 

claimed that there are limits on the types of activities that may be performed while concurrently 

typing. For instance, he reported a significant drop in typing performance when users were asked 

to transcribe text from audio and read aloud a different visually presented text at the same time. 

13) Position is an important part of the internal representation of the response. Reaction times are 

shorter for characters that are positioned corresponding to keyboard locations of the characters to 

be typed (Logan, 2003). 

2.5.2 Units of Text Entry 

This section discusses six phenomena (14-19) regarding the following units of transcription typing, defined 

by Salthouse (1986, 1987). 

 Copying Span denotes the amount of text that can be typed accurately after a single review of the 

presented text. 

 Stopping Span signifies the amount of text to which the user is irrevocably committed to typing. In 

other words, the amount of text typed after the user has been told to stop. 

 Eye-hand Span indicates the amount of text intervening between the character receiving the 

attention of the eyes and the character whose key is currently being pressed. 

 Replacement Span signifies how far in advance of the current keystroke the user commits to a 

particular character. 

 The Detection Span is defined as how far in advance of the current keystroke the user can detect a 

specially designated target character. 

14) The copying span ranges from 7 to 40 characters (Rothkopf, 1980; Salthouse, 1985) 

15) The stopping span is between 1 and 2 characters (Logan, 1982; Salthouse and Saults 1985). 

Interestingly, a similar span was found for error correction as well. Several studies reported that 

most users notice and correct errors within 1 to 2 characters (Long, 1976; Shaffer and Hardwick, 

I969b). Also, the first keystroke after an error is much slower than other keystrokes (Salthouse, 

1984; Shaffer, 1973). This indicates that error detection is often instantaneous and users pause 



 

 

44 

momentarily after noticing an error before resuming normal typing. Section 3.1.6.3 investigates 

this further, but for text entry tasks instead of transcription. 

16) The eye-hand span ranges between 3 and 7 characters for average to expert users (Butsch, 1932; 

Hershman and Hillix, 1965; Logan, 1983; Salthouse, 1984a, 1984b, 1985; Shaffer, 1973, 1978; 

Shaffer and French, 1971; Shaffer and Hardwick, 1970). 

17) The eye-hand span decreases for unfamiliar, meaningless, or random text in comparison to the 

value for meaningful text (Hershman and Hillix, 1965). Salthouse (1984a) reported on average 

3.45 characters eye-hand span for meaningful and 1.75 characters for meaningless text. 

18) The replacement span is approximately 3 characters long (Salthouse and Saults, 1985). 

19) The detection span is about 8 characters long (Salthouse and Saults, 1987). 

2.5.3 Error Phenomena 

This section elaborates on five typing error phenomena (20-24) identified in transcription typing. Although 

these phenomena were reported using different error classifications in the literature, this section uses the 

classification proposed by Gentner et al. (1983) for easier understanding. Section 2.6.4 explains Gentner et 

al.’s classification approach in more detail. 

20) Only a fraction of errors (40-70%) are detected without reference to the transcribed text (Long, 

1976; Rabbitt, 1978; West, 1967). This suggests either that different mechanisms are responsible 

for producing and detecting errors or that the mechanism that detects errors is faulty (Salthouse, 

1986). 

21) Substitution errors mostly involve surrounding keys. Grudin (1983a, 1983b) reported that between 

31 to 59% substitution errors involve horizontally adjacent and 8 to 16% involved vertically 

adjacent keys. 

22) Many misstroke and insertion errors involve “extremely” short interkey intervals (Grudin, 1983a). 

Salthouse (1986) reported that the median ratio of the interval for a particular keystroke relative to 

the median interkey interval across all keystrokes is considerably less for both the erroneous (0.68 

ms) and the immediately following keystroke (0.871 ms). 

23) Many omission errors are followed by a keystroke with an interval nearly twice the overall median 

(Grudin, 1983a; Shaffer, 1975b). Dvorak et al. (1936) claimed that these errors are more frequent 

on difficult-to-reach keys, such as “M” and “N”. Thus, the keys involving the little fingers have a 

higher probability of being omitted than the ones involving the index fingers. 
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24) Most transposition errors (about 80%) are caused by successive alternate hand keystrokes (Grudin, 

1982, 1983b; Salthouse, 1986; Shaffer, 1975a). 

2.5.4 Skill-Learning Phenomena 

This section lists eight skill-learning phenomena (25-32). They also indirectly explain how expert users 

achieve superior transcription typing performance over novice users. 

25) Bigrams typed with alternate hands or with two different fingers of the same hand improve faster 

than bigrams typed with one finger (Gentner, 1983a, 1983b; Salthouse, 1984a). This phenomenon 

indicates that improvements in transcription typing skill require the user to master how to overlap 

and coordinate the movements of successive keystrokes. 

26) The repetitive tapping rate (with both same and alternate hand fingers) increases with increased 

skill (Salthouse, 1984a). This indicates that the precision and coordination of basic execution 

processes, such as the eye-hand span discussed above, improve with practice (Salthouse, 1984a). 

27) Interkey interval variability decreases with increased skill. The interquartile range of interkey 

intervals across all keystrokes decreases about 1.5 ms for every WPM increase in entry speed 

(Salthouse, 1984a).  

28) The eye-hand span increases with increased skill (Butsch, 1932; Salthouse, 1984a, 1985). Studies 

reported an increase of between 0.5 and 1.2 characters with every 20 WPM increase in entry speed 

(Salthouse, 1984a; Salthouse and Saults, 1985). 

29) The replacement span increases with increased skill. Salthouse and Saults (1985) reported that the 

replacement span increases by about one character with every 30 WPM increase in entry speed. 

30) The copying span is dependent on typing skill (Salthouse, 1985a; Salthouse and Saults, 1985). 

31) The stopping span increases with increased skill (Logan, 1983). 

32) Phenomena 25, 26, and 27 differ for different keystroke sequences (Gentner, 1983). 

2.5.5 Vision Phenomena 

Expert transcription typists usually perform the tasks of encoding the text and then translating that into a 

sequence of corresponding manual keystrokes in parallel (Rayner, 1998). They use their visual system 

almost exclusively for the encoding of the presented text, aside from a few occasional glances at the 

keyboard. Many have attempted to study this to better understand how a users’ visual system works in 

skilled typing. This section summarizes four such phenomena (33-36). 
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33) Gaze time per character decreases with increased preview window size (Rayner, 1998). 

34) The average saccade size is approximately 4 characters (Inhoff and Wang, 1992). A saccade is a 

rapid intermittent eye movement that occurs when the eyes fix on one point after another in the 

visual field.  

35) The fixation duration is about 400 ms (Inhoff and Wang, 1992). Fixation is defined as the 

maintaining of the visual gaze on a single location. 

36) Attention to the hands disrupts skilled typewriting (Logan and Crump, 2009; Tapp and Logan, 

2011). Typists usually slow their rates of typing so they can see which hand types which character. 

This section discussed several well-identified phenomena in skilled transcription typing. The next section 

elaborates on different types of errors and how users tend to handle these errors. 

 Error and Error Correction 2.6

Text entry errors can be divided into two main categories, system errors and human errors, as both the text 

entry system and the user can commit errors. 

2.6.1 System Errors 

Unambiguous text entry techniques such as Qwerty have dedicated keys for each character. There, typing is 

usually straightforward and free of system errors. Some ambiguous text entry techniques, such as those that 

use a keypad with fewer keys than the number of characters, involve a software-level ambiguity. To input a 

character with such techniques one has to perform a predetermined procedure or a sequence of tasks for the 

software to identify the intended character. For instance, to input the letter “n” with the Multi-tap 

technique, see Section 2.2.5, one has to press the “6” key twice. Yet, because they are deterministic, these 

techniques are also typically free of system errors. However, recognition-based techniques involving; e.g., 

speech, gesture, and handwriting recognition, are more error prone due to the occurrence of system errors 

(Mankoff and Abowd, 1999). A system error is an instance where the user input the correct information, but 

the system mis-interprets the user actions and outputs no or the wrong character (or word). Interestingly, 

even humans can experience visual recognition errors as high as 56% when looking at handwritten word 

fragments without awareness of the context (Schomaker, 1994). User interaction can also change 

significantly depending on several uncontrollable variables, such as vocal or finger fatigue and a users’ 

ambient environment. Moreover, any other notable differences from the situation in which training data 

was acquired can also reduce recognition accuracy (Frese and Sabini, 1985). Hence, many have claimed 
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that it is impossible to develop a perfect speech, handwriting, and gesture recognition technique (Mankoff 

and Abowd, 1999). Nevertheless, researchers are persistently coming up with new methods and strategies 

to reduce recognition errors and to make these techniques more reliable. Yet, the question if and especially 

how users adapt to a text entry technique’s system errors has not yet been investigated in depth. 

2.6.2 Human Errors 

It is evident that regardless how perfect an input technique is, humans will still make mistakes (Card et al., 

1983). Such errors are an important source of insight into the organization underlying text entry performance 

(Grudin, 1983a). Thus, it is necessary to better understand human errors to improve the overall text entry 

performance with a given technique. 

In the context of text entry, the general assumption is that human behavior is the result of a goal-oriented 

action (Gentner, 1983; Miller et al., 1960; Norman, 1981). Accordingly, within a goal-oriented framework, 

certain assumptions can be made about human errors (Brodbeck et al., 1993; Zapf et al., 1992). First, errors 

only appear in the pursuit of a goal. Yet goals such as to press keys at random are explicitly insensitive to 

errors. Second, an error implies failure to attain a specific or a higher order goal. Failure to attain a low-

level goal occurs when, for example, someone attempts to recover deleted text that cannot be recovered. In 

this case, the user reaches a dead end where that particular goal cannot be attained. A higher order goal, in 

contrast, is unattainable when plans are wrongly arranged. In other words, when a set of correct specific 

goals is attained but the sequence of sub-goals is incorrectly set up this makes the higher order goal 

unattainable (Reason, 1990). For instance, when the efficiency of work performance is considered a higher 

order goal, taking an action detour can be seen as failure to attain that goal. Finally, an unattainable goal 

should potentially be avoidable, otherwise it cannot be considered as an error (Reason, 1990). For instance, 

it is not an error if data is lost due to a power outage, as the user cannot avoid such an incident. 

2.6.3 The Mismatch Concept 

A theory, known as the mismatch concept, holds both the user and the system responsible for committing 

an error (Brodbeck et al., 1993; Rasmussen, 1984). It suggests that errors cannot be attributed to the user or 

the system individually. Instead, it is the “mismatch” in the interaction between these two that causes an 

error. There are mainly two kinds of mismatch problems: functionality and usability. 
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Functionality problems are mismatches between the tasks and the system. This kind of problems occurs 

when the system makes a task more difficult for the users to perform than it is technically feasible 

(Brodbeck et al., 1993). Also, this applies when the system does not permit users to reach a goal that is 

required to complete a task. Functionality problems usually impose the following actions on the users 

(Brodbeck et al., 1993). 

 Action Blockades: Users are forced to terminate a task-specific goal because certain task-relevant 

actions cannot be performed with the system. 

 Action Repetitions: The system forces users to perform a task again because parts of their work 

have been lost. 

 Action Interruption: An ongoing work is interrupted for an inappropriate amount of time. 

 Action Detour: Users have to work around specific functional deficits of the system. 

Most of these functionality problems can be avoided by making sure that the system and the tasks are well 

matched to each other (Brodbeck et al., 1993). 

Usability problems, on the other hand, are mismatches between the user and the system. This kind of 

problems occurs when users do not attain their individual goals and a functionality problem cannot be 

assumed (Zapf et al., 1992). This implies that it is not sufficient to base user actions only on the description 

of their tasks, and erroneous actions also have to be observed. Despite the theoretical implication, the 

attribution to a system component is still important for practical reasons (Brodbeck et al., 1993). If a large 

number of users are making the same mistake, it might be prudent to change that specific feature of the 

system. This decision, however, should be taken on the basis of empirical data. 

2.6.4 Error Classification 

Gentner et al. (1983) compiled a glossary that provides a framework for the classification and description 

of text entry and transcription typing errors. Although the glossary was initially compiled for text entry and 

transcription tasks with a typewriter, it also applies for standard and virtual Qwerty keyboards (Wobbrock 

and Myers, 2006). This glossary is widely used in literature to explain the phenomena of committing errors. 

Therefore, it is briefly reviewed below. 
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 Misstroke Errors: Inaccurate movements of a finger cause such errors, for example, when users’ 

finger(s) strike multiple keys simultaneously or if they contact another key in passing with 

sufficient force to activate it. 

 Transposition Errors: This occurs when two consecutive characters are interchanged. 

 Interchange Errors: This takes place when two non-consecutive characters are interchanged. 

 Migration Errors: This occurs when a character is moved to a new position with one or more 

characters intervening. 

 Omission Errors: Omission errors occur when a character of a word is left out. 

 Insertion Errors: This occurs when an extra character is inserted. However, if the insertion of that 

character is due to erroneous finger movement, it can also be classified as a misstroke error. 

 Substitution Errors: This takes place when wrong key(s) surrounding the intended one are pressed 

by mistake. 

 Doubling Errors: This occurs in words contacting repeated characters, when the wrong character 

is repeated instead of the correct one. 

 Alternation or Transposed-Doubling Errors: This occurs in words containing alternate characters, 

where a wrong alternation sequence is produced (Dvorak et al., 1936). 

Table 2 presents examples of each class of human errors presented above. 

Table 2. Classification of human errors while inputting text with typewriters or similar devices. 

Error Type Intended Output 
Misstroke major mnajor 

Transposition major amjor 
Interchange major jamor 

Migration major jmaor 
Omission major majr 
Insertion major majour 

Substitution major najor 
Doubling book bokk 

Alternation these thses 

Grudin (1983a) conducted a study with novice and skilled users to identify error patterns while transcribing 

text with a standard Qwerty keyboard. The method used to categorize the errors was very similar to the 

above-presented classification. Eight novice and six skilled users participated in the study, where they 

achieved on average 20 and 75 WPM entry speed, respectively. Results showed that the most frequent error 

types are insertion, substitution, omission, and transposition. Novice users mostly made substitution errors, 

while skilled users more frequently performed insertion errors. Figure 16 illustrates this. 
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Figure 16. The most frequent types of human errors while transcribing text with a standard Qwerty keyboard. 

Alternative ways of classifying errors have also been proposed. Norman (1981), for instance, categorized 

errors as mistakes or slips by judging the intentions of the users. A mistake is an error in the intention of the 

user, while a slip is an error where the intention was correct but an error was made while executing the 

intention. White (1932) categorized character- and word-level errors with a standard Qwerty keyboard into 

ten different types. However, this classification method is dependent on the errors remaining in the 

transcribed text and thus does not account for corrected errors. Soukoreff and MacKenzie (2003), 

conversely, analyzed input streams instead of transcribed texts so that corrected errors can be detected as 

well. They included seven new error types relative to Gentner et al.’s (1983) classification to differentiate 

between corrected and uncorrected errors, as discussed in Section 2.3. Based on Norman’s (1981) mistake 

and slip approach, a recent work (Read et al., 2001) categorized text entry errors for child users, which was 

then reevaluated and extended in a later work (Kano et al., 2007). 

2.6.5 Error Correction 

Text entry errors can be corrected with two different strategies: character-level or word-level. In character-

level correction any erroneous character is corrected right away. In word-level correction, erroneous key 

presses are corrected after several other keystrokes have happened following the incorrect one. This kind of 

strategy is used when experienced users chunk their input or when they do not verify their input right away. 

Almost all popular text entry techniques provide methods to correct errors that are committed with both 

strategies (Grudin, 1983a). Although some work focused on how frequently errors are noticed and corrected 

by transcription typists (Long, 1976; Shaffer and Hardwick, I969b), currently there is no data on how often 

these two error correction strategies are used in text entry. It is also unclear whether (and how) users adapt 

to a faulty text entry technique that frequently misinterprets user input. 
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2.6.5.1 Error Correction vs. Text Editing 

The processes of error correction and text editing are fundamentally different. Error correction can be 

classified as a set of goals. As the process of committing errors is unintentional, error correction is never 

planned. In text editing, however, users can set goals that can be formulated by versatile plans that are then 

addressed by repeated problem solving (Robertson and Black, 1986). 

Nevertheless, error correction in longer segments of text is virtually indistinguishable from general text 

editing. This makes such efforts unpredictable and harder to model. Based on the review in Section 2.5.2, 

especially Phenomenon 15, and Section 3.1.6.3, this document classifies text editing as all correction efforts 

that occur after inputting twelve or more characters after an erroneous one. Text editing efforts are 

disregarded in this work henceforth. 

2.6.6 Effort vs. Learning 

A theory in psychology research identified the durability of episodic memory as a positive function of the 

degrees of semantic involvement in processing stimuli (Craik and Lockhart, 1972). In other words, peoples’ 

memory recall performance improved with the increased time to process the subsequent stimulus. This was 

verified through empirical studies that showed that deeper encodings take longer to process, but improved 

performance in tasks such as recall or recognition for words (Craik and Tulving, 1975). Similarly, a survey 

of skill acquisition research argued that manipulations that compromise the speed of acquisition could 

support the long-term goals of training (Schmidt and Bjork, 1992). They showed that encouraging active 

information retrieval from memory is a common and effective mechanism for skill acquisition in various 

domains. Motivated by this, prior work investigated the relationship between user effort and spatial memory 

in user interfaces (Cockburn et al., 2007). Results showed that interfaces requiring greater user effort 

improve learning for spatial tasks. Other work found that users depend more on memory retrieval than 

perceptually available information such as labels, when interacting with effortful strategies (Ehret, 2002). 

Likewise, recent work claimed that interfaces with usability problems may improve system efficiency and 

user experience in the long run (Riche et al., 2010). Marking menus are an example how this concept could 

be applied (Kurtenbach and Buxton, 1993). To force users to recall the direction of the intended menu item, 

they delay the display of the pie menu content. This affects interaction time for novices, but facilitates the 

transition to expert level (Cockburn et al., 2007). In a recent study, Labahn et al. (2008) observed that users 

seemed to adapt to an error-prone recognizer after using it for about half an hour. However, they did not 

investigate this further. 
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2.6.7 Errors in Gesture-Based Techniques 

Most gesture recognition techniques attempt to match a performed gesture to an existing, internal gesture 

library and return a match score. These libraries contain some form of template for the supported gestures, 

often based on the number of strokes, their order, direction, and/or the speed associated with them. Section 

2.2.7 provided more information on different gesture recognition strategies. When the match score is above 

a predetermined, but algorithm-dependent threshold, the system performs the action associated with the 

gesture that yielded the highest match score. In gesture-based text entry, this action is usually the output of 

a character. There are two types of errors that may occur in most gesture-based techniques: misrecognitions 

and failures to recognize. 

A misrecognition error occurs when the match score is above the predetermined threshold but the system 

misinterpreted the performed gesture, and thus, outputted an incorrect letter. An example is that the user 

inputs “u”, but the system recognizes and outputs “v”. Such errors are usually caused by the system and are 

well known to occur in most gesture-based techniques (Tappert and Cha, 2007). In an informal survey 

several popular gesture-based text entry systems, including Path Input11, DioPen12, and Touch-Writer13 

were explored. The first is a technique similar to Swype (Section 2.2.8.1) for iOS devices and the latter two 

are character-based techniques for Android OS devices. Even in a short test, each of these systems 

misrecognized some performed gestures and output incorrect letters. Figure 17 illustrates two such incidents. 

                                                             

11 https://itunes.apple.com/us/app/path-input-pro/id538744637 
12 http://androidaftermarket.store.aptoide.com/app/market/com.diotek.ime.diopen/3/166925/DioPen 
13 https://play.google.com/store/apps/details?id=glass.main 
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Figure 17. Misrecognition errors in: (a) Touch-Writer and (b) DioPen. In both cases, the user intended to input 
one character but the system misrecognized it as another. In (a), the user intended to input “R”, but the system 

misrecognized it as an “n”. In (b), the user intended to input “F”, but the system misrecognized it as a “t”. 

A failure to recognize error occurs when the match score for all templates is below a predetermined 

threshold or the length of the gesture is too short to be recognized. The survey indicated that human 

behaviors cause the largest proportion of such errors. A clear example is when the user accidently taps on 

an interactive surface or prematurely aborts performing or drawing a gesture. Another example is when the 

user inputs a gesture that is not part of the template library. Most techniques deal with such errors in two 

different ways. In this situation, they either do not display any output or query the users if they want to 

include the new gesture in the built-in library to enrich it. Figure 18 illustrates this. Having said that, 

sometimes a system will fail to recognize a valid gesture due to some other technical issue with the 

matching algorithm, such as a mismatch between the expected sample density and the true sample density 

provided by the digitizer. 

 
Figure 18. Error handling in: (a) Touch-Writer and (b) Gesture Go. In (a), the system displays no output when it 
fails to find a match for the performed gesture in the library. In (b), it asks the user to include the gesture in the 

library or to try again. 
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2.6.7.1 Alternative Methods 

Some gesture-based techniques allow users to input a given character with several alternative gestures. For 

example, the Jot technology by Communication Intelligence Corporation provides several alternative ways 

for drawing some characters. It even enables users to indicate their drawing preference for those characters. 

Therefore, users can switch the primary method for drawing a character with an alternative one. This is 

useful in situations when the recognition system does not work well for a given user and a given gesture. 

Similarly, EdgeWrite provides several variations for drawing some characters. Some commercial products, 

such as DioPen and Hot Virtual Keyboard, also support alternative gestures. Sections 2.2.8 and 2.2.8.1 

provide a brief overview of these techniques. 

 
Figure 19. The primary and some alternative methods for drawing “a” with: (a) Jot and (b) EdgeWrite. 

Yet alternative gestures are almost always less intuitive and harder to discover compared to the primary 

ones. Figure 19 illustrates the primary gesture and one of the alternative ones for inputting the character “a” 

with Jot and EdgeWrite. There, one can see that the alternative gestures are relatively less intuitive or 

harder to guess than the primary ones. Also, one has to either go to the extended tutorial (for Jot, 

EdgeWrite, and Hot Virtual Keyboard) or guess (for DioPen) to discover the alternative gestures. 

2.6.8 Modeling Text Entry and Error Correction 

Card et al. (1983) presented the GOMS technique to predict user skilled performance time. They separated 

the human’s cognitive architecture into four basic components: Goals, Operators, Methods for achieving 

the goals, and Selection rules for choosing among competing methods for goals. Despite the technique’s 

theoretical power, it was never used on a large scale in the HCI community. The most likely reason is that 

the cost of first learning the GOMS technique and then constructing a correct model for an interaction 

method is quite high relative to the accuracy of the results that can be obtained. 

Researchers have proposed several variations of GOMS to make modeling easier. The Keystroke-Level 

Model (KLM), for instance, eliminates all elements but the primitive operators (Card et al., 1980). This 
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makes KLM comparatively easier to learn and to construct models, but also makes it inadequate for multi-

modal techniques. The Natural GOMS Language (NGOMSL) is a high-level syntax for GOMS and based 

on cognitive complexity theory (Kieras, 1988). Constructing NGOMSL models requires performing a top-

down, breadth-first expansion of users’ top-level goals into methods and further into primitive operators. 

Mastering the NGOMSL technique requires significant effort, as does the construction of a correct model. 

The Cognitive-Perceptual-Motor GOMS (CPM-GOMS) is based on a model human processor (Gray et al., 

1992). Unlike other variations of GOMS, CPM-GOMS is capable of modeling multitasking behaviors, 

because it does not enforce user interaction as a serial process. Nevertheless, CPM-GOMS also requires a 

thorough understanding of GOMS and the human cognitive architecture. 

ACT-R is a cognitive architecture that aims to define the basic, irreducible cognitive as well as perceptual 

operations that enable the human mind (Anderson et al., 2004). As such, it looks like a programming 

language at first glance. Constructing an ACT-R model requires a detailed model of a task, which involves 

significant amount of expertise, time, and effort. Besides, the original form of ACT-R did not handle motor 

actions and all actions of the perceptual systems correctly, although recent versions rectify some of these 

shortcomings (Bothell, 2012). 

To overcome the complexity of the model construction process, rapid modeling tools such as QGOMS 

(Beard et al., 1996) and CAT-HCI (Williams, 1993) have been developed. The problem with these tools is 

that, once a model has been created, it is hard to change the model. In case of upgrades or design changes, 

the developers have then to either construct a new model or have to calculate the effect of that change by 

hand. Other tools, such as CRITIQUE (Hudson et al., 1999), depend on research tools that are not 

commonly available. John et al. (2004) proposed a new system to overcome these problems by integrating 

HTML mock-ups with ACT-R. This, however, limits the scope to web browsers. Recent improvements in 

web browsers have made this less of a concern. 

There are several models that predict text entry speed or performance. But none of them account for the 

cost of error correction. The KLM model mentioned above can predict text entry performance, by counting 

keystrokes and other low-level operations such as the mental preparation and the system’s response time. A 

similar model (Dunlop et al., 2000) forecasts the performance of predictive text entry techniques using 

three timing elements from KLM. However, its timing elements were measured only for standard Qwerty 

keyboards. How and Kan (2005) improved that model by defining thirteen operators that map directly to 

operations on a mobile keypad for different text entry techniques. Later, Hollies et al. (2007) presented 

another keystroke-level model to measure and predict mobile phone interactions. Their model considers 
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even advanced interactions, such as using the embedded camera. Soukoreff and MacKenzie (1995) presented 

a theoretical model to predict upper and lower-bound entry speeds for using a stylus to tap on soft 

keyboards. The model is based on the Hick-Hyman Law for choice reaction time, Fitts’ law for rapid aimed 

movements, and English linguistic tables for the relative frequencies of bigrams. All of these models predict 

the performance of particular text entry technique without accounting for error correction methods and 

behavior. Several other metrics to characterize a techniques’ performance exist, as reviewed in Section 2.3. 

Suhm (1997) developed an interactive multimodal error correction method for speech recognition. This 

method can account for switches between different input modalities, such as continuous speech, oral 

spelling, hand-drawn gestures, choosing from a list of alternatives, cursive handwriting, and typing. To 

predict the performance of his technique, Suhm introduced a new, high-level model for the cost of error 

correction, as existing models cannot predict the performance of such a multimodal technique. The model 

expresses the users’ effort on error correction as a compound measure of the time required by the user to 

correct errors, the response time of the system, the accuracy of the automatic interpretation of corrected 

input, and the naturalness of the interaction. To overcome the model’s technique dependency to some 

degree, Suhm separates human-specific parameters from system-specific ones. The model, however, does 

not contain important human-specific parameters such as the visual verification time, human movement 

time, and the probability of committing an error. Moreover, the relationships between various parameters 

were not clearly explained. 
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Chapter 3  

Error Correction Conditions 

Section 2.4 described how most text entry studies are conducted with one of three error correction conditions: 

none, recommended, and forced. To summarize, in the none condition, participants are not allowed to correct 

errors. In the recommended condition, correction of errors is recommended if and as participants identify 

them. Finally, in the forced condition, participants are forced to correct all errors. To investigate if these 

conditions have a noticeable effect on popular text entry performance metrics, this chapter presents results of a 

user study that compared these error correction conditions. The results constitute a notable step towards 

making it easier to compare different text entry user studies, especially if they involve different error 

correction conditions. 

 A User Study 3.1

This study investigated if different error correction conditions have an effect on various text entry metrics. 

It also examined the relationships (if any) between different error metrics, and attempted measure the rates 

in which different error correction strategies (as explained in Section 2.6.5) are used in practice. In other 

words, the study tested the following hypothesis: 

(H1 C3) The three error correction conditions used in text entry user studies; i.e., none, recommended, and 

forced, influence the following performance metrics—WPM, KSPC, ER, EKS, MSDER, TER, and Visual 

Scan Time (VST). 

Section 2.3 discussed the first six performance metrics, while Section 3.1.3 discusses VST. In addition, the 

following hypothesis was also tested: 

(H2 C3) Text entry speed during the none condition is significantly higher than the recommended and the 

forced condition. 

This hypothesis is based on the fact that the none condition does not allow users to correct errors and thus 

does not require additional time for error correction. 
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3.1.1 Participants 

Twelve participants, aged from 22 to 45 years, average 27, took part in the study. Appendix A3 elaborates on 

the procedure used to decide the number of participants (sample size). They were recruited through local 

university e-mailing lists, posting flyers on campus, and by word of mouth (convenience sampling). Only 

experienced typists and fluent English speakers were recruited for the study to minimize learning effects. 

Towards this, anyone who could not achieve an average entry speed of 50 WPM on three short English 

phrases with a standard Qwerty keyboard was excluded from the study. Moreover, the participants were either 

native speakers or had spent at least five years in an English-speaking environment. Nine of them were male 

and all of them were right-hand mouse users. They all received a small compensation (CAD 10.00) for their 

participation. 

3.1.2 Apparatus 

A Compaq KB-0133 Qwerty keyboard and an IBM 19″ CRT monitor at 1280×960 pixel resolution were 

used during the study. A custom Java program logged all keystrokes with timestamps during text entry and 

calculated user performance directly. The 460×500 application window was positioned at the center of the 

screen. A fifteen point Tahoma font was used to present text on the screen. 

3.1.3 Procedure 

During the study, participants entered short English phrases from a phrase set (MacKenzie and Soukoreff, 

2003). The corpus does not contain any numeric and special characters, and all uppercase characters were 

converted to lowercase. It was selected because of its high correlation with the character frequency in the 

English language. This makes this work comparable to others’. See Appendix A2 for more information on 

the phrase set. The phrases were displayed to participants one at a time on the screen in a dialog. They were 

asked to take the time to read, understand, and memorize the phrases, to enter them as fast and accurate as 

possible, and to press the Enter key when they were done to see the next phrase. Timing started from the 

entry of the first character and ended with the last (the character before the Enter keystroke). Participants 

were informed that they could rest between conditions or before inputting a phrase. 

During the none condition participants were asked not to correct any error. They were instructed to ignore 

errors and carry on if they noticed errors in their transcribed text. For this condition, all edit functions, 

modifier, and navigation keys, and mouse operations that could be used to correct errors were disabled. 
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Thus, participants could not fix their errors even if they attempted to do so by mistake. During the 

recommended condition users were asked to work normally. That is, to correct their errors as they notice 

them. They were also informed that they could use any edit functions, modifier and navigation keys, or the 

mouse for error correction. During the forced condition an error notification function was used to inform 

participants of their errors—when an erroneous character was entered the application made a “ding” noise 

and the input text field turned red. Participants were instructed to take the necessary actions to correct that 

erroneous character before proceeding. Also, the system prohibited users from submitting an erroneous 

phrase. In other words, they had to make sure that the final transcribed text was an exact match of the 

presented one before proceeding to the next phrase. 

The system calculated six commonly used performance metrics: WPM, KSPC, ER, EKS, MSDER, and 

TER. The system also recorded Visual Scan Time (VST), which signifies the time users took on average to 

visually scan the recently completed phrase before submitting it. The reason for measuring VST is a pilot 

study, where the experimenter noticed that users usually take additional time to quickly scan through the 

recently inputted phrase before proceeding to the next one. VST was measured from the time of the last 

keystroke until the Enter key. Upon completion of the study users were asked to fill a short questionnaire 

where they could comment on the examined error correction conditions. 

3.1.4 Design 

A within-subjects design was used. The within-subjects factor focused on the three error correction 

conditions: none, recommended, and forced. The dependent variables (and the metrics) were entry speed 

(WPM), error rates (KSPC, ER, EKS, MSDER, and TER), and VST (milliseconds). Section 2.3 defined 

these metrics. In each condition, participants were asked to complete 60 short English phases. There were 

five practice phrases prior to each condition, which were excluded from the analysis. Participants were 

randomly assigned into three groups in a 3×3 Latin square to minimize the effect of asymmetric skill 

transfer. In summary, the design was: 

12 participants × 

3 conditions (three within-subjects conditions: none, recommended, and forced error correction, Latin square) × 

60 short English phrases 

= 2,160 phrases, in total. Each participant inputted 180 phrases. 
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3.1.5 Results 

The twelve participants took on average six minutes for each condition, 19 minutes for all three conditions, 

and about 30 minutes for the whole study including the demonstration and breaks. The highest and lowest 

average entry speed for the participants were 121 and 55 WPM, respectively. 

D’Agostino Kurtosis tests on the dependent variables revealed that the data were normally distributed. A 

Mauchly’s test confirmed that the data’s covariance matrix was also circular in form. Thus, repeated-

measures ANOVA was used for all analysis. The statistical tests used a significance level (α) threshold of 

5%. That is, the null hypothesis was rejected when a probability value was below 5%. All statistically 

significant results are presented with effect size (η2) and power (1–β). See Appendix A1 and A4 for more 

information on η2 and 1–β, correspondingly. 

3.1.5.1 Words per Minute (WPM) 

An ANOVA failed to identify a significant effect of error correction condition on WPM (F2,11 = 3.11, ns). 

On average WPM for none, recommended, and forced were 81.82, 80.65, and 78.56, respectively. Figure 

20 illustrates this. 

 
Figure 20. Average entry speed (WPM) for all investigated error correction conditions. 

Error bars represent ±1 standard deviation (SD). 

3.1.5.2 Keystrokes per Character (KSPC) 

An ANOVA identified a significant effect of error correction condition on KSPC (F2,11 = 28.46, p < .0001; 

ɳ2 = .45, 1–β = 0.94). A Tukey-Kramer test showed that recommended and forced had significantly higher 

KSPC than none. On average these two had 8 and 9% more KSPC than none, respectively, as illustrated in 

Figure 21. 
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Figure 21. Average KSPC for all investigated error correction conditions.  

Error bars represent ±1 standard deviation (SD). 

3.1.5.3 Erroneous Keystrokes (EKS) and Total Error Rate (TER) 

An ANOVA identified a significant effect of error correction condition on both EKS (F2,11 = 8.42, p < .005; 

ɳ2 = .11, 1–β = 0.29) and TER (F2,11 = 9.77, p < .001; ɳ2 = .09, 1–β = 0.09). A Tukey-Kramer test showed that 

recommended and forced had significantly higher EKS and TER than none. On average the two had 66 and 

62% more EKS, and 51 and 43% more TER than none, respectively. Figure 22 illustrates average EKS and 

TER. 

 
Figure 22. Average EKS and TER for all investigated error correction conditions.  

Error bars represent ±1 standard deviation (SD). 

3.1.5.4 Error Rate (ER) and Minimum String Distance Error Rate (MSDER) 

The forced condition made sure that the final transcribed text is error free by forcing participants to correct 

their each mistake. As a result, ER and MSDER measured zero errors for this condition. Thus, these two 

metrics were analyzed only for the none and the recommended condition. An ANOVA found a significant 

effect of error correction condition on both ER (F1,11 = 38.91, p < .0001; ɳ2 = .53, 1–β = 0.99) and MSDER 
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(F1,11 = 38.65, p < .0001; ɳ2 = .53, 1–β = 0.99). Figure 23 presents the average ER and MSDER. Results 

also revealed that recommended had about 18% lower ER and MSDER than none. 

 
Figure 23. Average ER and MSDER for all investigated error correction conditions. Error bars represent ±1 

standard deviation (SD). 

3.1.5.5 Visual Scan Time (VST) 

An ANOVA failed to identify a significant effect of error correction condition on VST (F2,11 = 0.39, ns). The 

average VST for none, recommended, and forced were 294, 348, and 252 ms, respectively. Also, no obvious 

relationship was found between VST and the length of the transcribed text, and between VST and entry speed. 

3.1.6 Discussion 

The results of the study support acceptance of the hypothesis H1 C3 (see Section 3.1) for all error metrics 

(KSPC, ER, EKS, MSDER, and TER), but not for entry speed (WPM) or Visual Scan Time (VST). The 

results also do not support acceptance of the hypothesis H2 C3. The following subsections discuss the 

findings of the study in more detail. 

3.1.6.1 Entry Speed 

It only seemed natural to assume prior to the study that the none condition will yield a higher WPM than 

recommended and forced. This is based on the impression that entering error free phrases would require 

more time, as the measure of time for the former condition would be the sum of the entry time and the error 

correction time. Surprisingly, the data did not support this assumption. Results showed that error correction 

conditions did not have a significant effect on WPM for expert users. There are two potential reasons for 

this. First, the WPM calculation, see Equation (4), considers all the characters in the transcribed text, not 

only the correct ones. This means, incorrectly inputted characters during none and recommended were also 
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counted for the WPM calculation. Second, during the none condition, participants often instinctively tried 

to correct their errors before they remembered that they could not. Such a failed error correction attempt 

requires a bit of time, as participants need to mentally recover and resume the original task. Similarly, 

during the recommended condition, participants tended to correct their errors almost the moment they made 

them, making this condition close to the forced condition. This is also apparent in the rate at which edit 

operations, such as Backspace, Delete, and mouse clicks to reposition the cursor, were used during the 

conditions. An ANOVA showed that there was no significant difference between the number of edit 

operations in recommended and forced (F1,11 = 0.65, ns), and the edit operations did not significantly differ 

across conditions. Also, no obvious relationship between users’ entry speed and their instinctive attempts to 

correct errors was found. However, novice users may display different behaviors. Figure 24 shows the 

average edit operations for each condition. 

 
Figure 24. Average edit operations for all investigated error correction conditions.  

Error bars represent ±1 standard deviation (SD). 

Interestingly, participants almost exclusively used the Backspace key while correcting errors. This occurred 

although users were informed beforehand that they could use the keyboard shortcuts or the mouse (a mouse 

click was considered as one operation) to correct errors, if they wanted to. Nonetheless, during the study, 

about 99% of the all edit operations were Backspace. 

3.1.6.2 Error Rate Metrics 

The result showed that there was a significant effect of error correction condition on all major error metrics. 

This finding underlines the importance of presenting error rate measures along with the WPM measure 

when comparing text entry techniques. Results also showed that recommended and forced had significantly 

higher KSPC than none. The likely reason behind this result is that the KSPC measure compares the input 

stream and the transcribed text, not the presented text. As both the input stream and transcribed text contain 

erroneous characters, the KSPC value always remains lower for the Qwerty keyboard. Yet the KSPC value 

is always higher than 1.0 because of the presence of edit, modifier, and navigation keystrokes in the input 
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stream. The results also indicate that the ER and MSDER measures are almost equivalent, see Figure 23. 

This matches the insights mentioned in Section 2.3.2. Other error rate measures, however, do not seem to 

have any simple relationship that would enable conversion from one to another.  

3.1.6.3 Error Correction Strategies 

Upon completion of the study, all users responded that they found the recommended condition closer to 

real-life text entry, since this condition did not restrict them from their natural process of error correction. 

In other words, this condition represents natural text entry behavior more closely than the other conditions. 

Consequently, the data for the recommended condition was extracted and used to investigate how often 

character- and word-level error correction strategies, mentioned in Section 2.6.5, were used. As a 

counterbalanced design was used, the effect of asymmetric skill transfer can be ignored in this context. 

The number of Backspace keystrokes in correction episodes was utilized to detect how quickly participants 

noticed and fixed errors. This was motivated by the fact that about 99% of all error correction episodes 

involved only the Backspace key. The remaining 1% was keyboard shortcuts, navigation, Delete keys, or 

the mouse. This high percentage of Backspace usage may hold only for short English phrases and not for 

longer texts. However, text entry and text editing are fundamentally different as the latter requires repeated 

problem solving and versatile planning, as explained in Section 2.6.5.1. This justifies the decision of using 

data for short English phrases and limiting all analysis to error correction episodes involving Backspace. 

As mentioned above, character-level corrections are performed immediately after an erroneous character is 

entered, while word-level corrections happen later. An analysis on the data indicated that the proportion of 

error correction strategies was balanced. On average, 50.29% (SD = 7.2) of all correction efforts were 

character-level, while the remaining 49.71% (SD = 7.2) were word-level corrections. Figure 25 illustrates 

the different strategies of error correction by each participant. 

 
Figure 25. Character-level and word-level error corrections in text entry. 
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The word-level corrections were further analyzed to calculate more precisely when errors got noticed and 

corrected. Results indicate that 96.10% of all times an erroneous character got noticed and fixed between 

the second and fifth character, counted from the erroneous one, and the rest got noticed within twelve 

characters. A few errors were identified and corrected only when participants visually scanned the entered 

text after they were finished with the phrase. However, these correction episodes were not considered in 

this analysis, as this behavior occurred rarely, in 1.7% of all cases. Sometimes errors happened during the 

error correction process as well. An example of such an incident would be that the user first inputted “b” 

instead of the desired “a”, and then erroneously inputted “c” while attempting to fix the previous error. 

Analysis showed that on average 6.68% (SD = 3.97) of the total errors were committed during the 

correction process. Of these, 86.11% were corrected in the second try, and the rest on the third iteration. No 

incidents were identified where more than three attempts were required to fix an error. 

3.1.7 Limitations 

The ANOVAs identified a significant effect of error correction condition on all error metrics, which 

includes Keystrokes per Character (KSPC), Erroneous Keystrokes (EKS), Total Error Rate (TER), Error 

Rate (ER), and Minimum String Distance Error Rate (MSDER). A post-hoc analysis detected a large effect 

size for KSPC, EKS, ER, and MSDER, and a medium effect size for TER (see Appendix A1). Further post-

hoc analysis revealed that the statistical power exceeded the 0.80 threshold (see Appendix A4) at the 

observed medium to large effect size levels for all dependent variables, except for EKS and TER, see Table 

3. In other words, there was less than adequate statistical power for EKS and TER. While a larger sample 

size (N) may be necessary to achieve a sufficiently strong statistical power for these dependent variables, 

due to the medium effect size, TER may not have a sufficiently strong effect after all. Appendix A4 elaborates 

on the criteria used for calculating statistical power. 

Table 3. Detected effect size and measured statistical power. 

Dependent Variable Effect Size (η2) Power (1–β) 
KSPC Large > 0.80 
EKS Large << 0.80 
TER Medium << 0.80  
ER Large > 0.80 

MSDER Large > 0.80 

As the study recruited participants by using convenience sampling from the university community, the 

results may not generalize to a larger population. Nevertheless, an attempt was made to counteract this 

potential confound by recruiting not only university students but also instructors and staff. 
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 Summary 3.2

This chapter investigated if the way errors are handled in text entry studies has any effect on popular text 

entry metrics. Results of a user study showed that the way human errors are handled has a significant effect 

on all frequently used error metrics. This chapter also investigated how often character- and word-level 

error correction strategies are used in text entry. Results showed that the proportion of error correction 

strategies is almost balanced (50-50%). 

The next chapter uses the findings of this chapter to develop and validate a new model to predict the cost of 

error correction in character-based text entry techniques. 
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Chapter 4  

Predicting the Cost of Error Correction 

Error behavior in character-based text entry is not very well understood. All existing models for the cost of 

error correction account, at best, for errors in an indirect way. They either fail to account for both human- 

and system-specific parameters or are not general enough to be used with different text entry techniques. 

Based on the findings of Chapter 2 and Chapter 3, this chapter presents a new model that accounts for both 

human- and system-specific parameters to measure and predict the cost of error correction. The model is 

verified in several ways. First, by measuring the cost of error correction for three popular text entry 

techniques: the standard Qwerty keyboard, stylus-based virtual Qwerty keyboard, and the standard mobile 

keypad via data presented in Table 1. Second, by conducting a study that verifies that the predicted impact 

of injected system errors on a standard Qwerty keyboard matches real results. 

 The Cost of Error Correction 4.1

Error correction involves both human-specific elements, such as the time to tap on a key and the time to 

verify a correction, as well as system-specific elements, such as the key sequence required to replace a 

wrong character. The subsequent sections elaborate on these two elements. 

4.1.1 Human Error Correction 

It is necessary to have a better understanding of human error correction behavior to create a meaningful 

model. From the analysis of error correction behaviors, presented in Chapter 3, it is apparent that the 

correction process follows specific patterns. First, users may immediately verify what they have inputted 

and correct errors right away (character-level correction). Second and because users also chunk their input, 

they may verify the result only after inputting a few characters or even the whole word(s). In the later 

scenario, called word-level correction, users navigate to the area where they have noticed an error, correct 

it, and then resume their work. As explained in Chapter 3, the most common strategy in short-phrase text 

entry user studies is to use the Backspace key for both character-level and word-level corrections. There 

seems to be no fundamental difference between the two strategies, except that rewriting multiple erased 

characters is an integral part of word-level correction, which scales linearly with the number of characters 
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after which the error was noticed. Consequently, there is no strong need to distinguish between character-

level and word-level error correction behaviors in the model. 

 
Figure 26. A flowchart representation of human text entry error correction behavior. 

Error correction requires additional cognitive and motor steps compared to error-free text entry behavior. 

Section 2.5 listed several of such cognitive and motor steps, including preparation and movement times. 

Based on that list and the observations made during the study reported in Chapter 3, Figure 26 illustrates 

the expected sequence of steps for normal text entry and error correction in a flowchart. As illustrated, there 

are the following human-specific parameters for error correction. 

 𝑻𝑻 , the preparation time, is the average cognitive planning and decision time to start or resume 

a task. 

 𝑻𝑻 , the movement time, is the average time required by the user to move their finger(s) to the 

intended key(s). 

 𝑻𝑻 , the input time, is the average time necessary for the user to perform a single keystroke or 

similar operation such as a stylus tap, a mouse click, or a gesture. 

 𝑻𝑻 , the verification time, is the average cognitive time required to verify that output matches 

input. 

 𝝆𝝆 , the human-specific error probability, is the probability of users making an error when 

performing a keystroke or a similar operation. 
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4.1.2 System Error Correction 

Text entry techniques use both open and closed loop systems. In closed or feedback loop systems, inputs 

trigger the processes and the processes control the outputs. For example, while entering a character, a 

keystroke triggers the process that decides which character to display on the screen. On the other hand, in 

open loop systems, user inputs trigger only the processes that convert the input to the output, while the user 

can continue working. In other words, an open loop system does not directly monitor the output of the 

process that it is controlling. In some text entry techniques such as handwriting and speech recognition a 

specific command or operation may be processed in the background instead of the result being immediately 

displayed. One technical motivation for this is that some handwriting recognition techniques cannot be 

performed fast enough. Figure 27 illustrates the input handling of text entry techniques in a flowchart, 

where the shaded tasks are performed only in closed loop systems. 

 
Figure 27. Input handling in text entry techniques. 

Depending on the technique, some recognition tasks may take significant time. That is why it is important 

to identify system specific parameters that may play a role in error correction procedures. 

 𝒔𝒔, the system, is a particular text entry technique, defined by a combination of software and 

hardware. Examples are Qwerty, Multi-tap, T9, etc. 

 𝑻𝑻 , the system output time, is the time necessary for the system s to process a keystroke or 

similar operations and output the result. 

 𝝆𝝆 , the system-specific error probability, is the probability of the system making an error when 

processing an input action. 

Some techniques, especially the ones use in closed loop systems, are practically error-free or suffer only 

from very rare malfunction. Most keyboards are a good example for this. Other techniques, especially 
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recognition techniques, have to distinguish between potentially fairly similar forms of input and exhibit 

significant error rates. For example, in handwriting recognition techniques, a common system error 

misidentifies a “u” as “v”, and vice versa. 

4.1.3 Compound Parameters 

The following compound parameters are defined based on the human- and system-specific parameters 

defined above. 

 𝑻𝑻 , the output time, is the sum of the time to correct a character entered by the user and the 

time to process and display that input through the system. 

𝑻𝑻 =     𝑻𝑻 + 𝑻𝑻 ∗ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 + 1 + 𝑻𝑻  Equation (10) 

Here, 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾  is the KSPC metric calculated using a corpus’s letter-frequencies. This metric is commonly 

used in text entry studies to measure the average number of keystrokes required to generate a character of 

text for a given text entry technique. Here, 𝑻𝑻  is scaled with 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾  because there are techniques where 

it takes more or less than one keystroke to enter a character such as Multi-tap and T9. In unambiguous text 

entry techniques such as Qwerty, it takes exactly a single keystroke to input a character. The “+  1” term 

after 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾  accounts for the fact that the incorrect character has to be deleted first and that users use the 

dedicated Backspace and/or Delete key. This is justified as 99% of all error corrections episodes used this 

Backspace key to delete an erroneous character, see above. Here, 𝑻𝑻  is added once, as it is usually hard 

to differentiate between the movement and the input time for the character immediately following a 

Backspace, as users often position their hand or finger on the next key while still tapping on the Backspace 

key, a behavior observed in the study presented in Chapter 3. Also, see the replacement span phenomena 

explained in Section 2.5.2. In the current context 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾  can be calculated using the following equation 

(MacKenzie, 2002). 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 =
𝑲𝑲 ∗ 𝑭𝑭
(𝑪𝑪 ∗ 𝑭𝑭 )

 Equation (11) 

Here, 𝑲𝑲  is the number of keystrokes required to enter a character, 𝑭𝑭  is the frequency of the 

character in the corpus, and 𝑪𝑪  is the length of the input, which is 1 for characters. 𝑪𝑪  ensures that 

one can generalize this notion to input of more than a single character or word (MacKenzie, 2002). 
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 𝑻𝑻 , the correction time, is the compound of the human and system time necessary to correct 

a single erroneous character in a single attempt. By adding the effort for the mental preparation 

necessary to fix an error to 𝑻𝑻 , one arrives at the following equation. 

𝑻𝑻 =   𝑻𝑻 + 𝑻𝑻  Equation (12) 

Here, the mental preparation time 𝑻𝑻  is added as error correction involves substantial cognitive planning 

and decision making, including the time to mentally change tracks, see Section 2.5.3 and Section 2.6. 

4.1.4 The Probability of Error 

The whole probability for an error to happen while inputting text can be expressed using the following 

equation. 

 𝝆𝝆 , the probability of error, is the compound of the probability of the system, the user, or the 

both making an error. 

𝝆𝝆 =    𝝆𝝆 + 𝝆𝝆 − 𝝆𝝆 ∗   𝝆𝝆  Equation (13) 

Here, 𝝆𝝆 ∗   𝝆𝝆  represents the probability of a simultaneous error by both the system and the user. 

This is subtracted, as despite the fact that both parties have committed mistakes, the overall process results 

only in a single mistake. For instance, when users input an incorrect character and the system misinterprets 

the same character, the output will contain only a single erroneous character. 

4.1.5 The Probability of Noticing an Error 

As discussed in Section 3.1.6.3, errors are not always noticed right after they were committed. In-depth 

analysis of the study logs from the user study discussed in Chapter 3 indicates that the probability that an 

error will be identified after c characters is subject to exponential decay. This is illustrated in Figure 28, 

where one can also see that the data can be fit quite well with an exponential function (R2 = 0.97). One may 

speculate the out-of-line data point after the second character to be a behavioral pattern that does not follow 

the general trend. Yet there is not enough data to be able to make a definite statement on this. 
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Figure 28. The probability 𝛒𝛒𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 of noticing an error after the cth character is exponentially distributed. 

Thus, the probability of noticing an error after 𝒄𝒄 characters can be modeled reasonably accurately by an 

exponential distribution. More precisely, when 𝒄𝒄 is a nonnegative integer and 𝒄𝒄 = 1 means that the error 

was noticed right after committing it, then: 

 𝝆𝝆 , is the probability of noticing an error after c characters. 

𝝆𝝆 = 𝑎𝑎 ∗ 𝑒𝑒  Equation (14) 

Where, 𝑒𝑒 is Euler’s number (𝑒𝑒 ≈ 2.718), and 𝑎𝑎 and 𝑏𝑏 are constants that are determined by the curve fitting 

process. 

4.1.6 A New High-Level Model for the Cost of Error Correction 

Based on the above analysis of error behavior logs, as well as the analysis of human error correction 

strategies and the relationship of human- and system-specific parameters, this section presents a new model 

for predicting the cost of error correction. 

 𝑻𝑻 , the average extra time it takes per character to fix errors using a particular text entry technique. 

𝑻𝑻 = 𝝆𝝆 ∗ 𝝆𝝆 ∗ 𝒄𝒄 ∗ 𝑻𝑻  Equation (15) 

 
 

Here, 𝒊𝒊 is the number of corrections and 𝒄𝒄 expresses the number of characters inputted after the erroneous 

one before the error is identified, also see the previous section. The inner sum (𝑥𝑥) expresses the effort for 

𝑥𝑥  
𝑦𝑦  
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correcting an error as the probability of noticing an error multiplied by the number of operations necessary 

to correct it as well as the effort to perform those operations. 𝒄𝒄 is multiplied with 𝑻𝑻  as the number of 

necessary correction operations increases with 𝒄𝒄. The outer sum (𝑦𝑦) accounts for repeated error corrections 

(i.e., correction upon corrections) and the decreasing probability of errors on errors. As the inner and outer 

sums are both convergent series, one can apply the general formula for geometric sums. First, one finds for 

the inner term: 

𝝆𝝆 ∗ 𝒄𝒄 ∗ 𝑻𝑻 =   
𝝆𝝆

1 − 𝝆𝝆
∗ 𝑻𝑻  Equation (16) 

Then, using the same approach for the outer sum, one arrives at: 

𝑻𝑻 =
𝝆𝝆 ∗ 𝑻𝑻 ∗   𝝆𝝆
1 − 𝝆𝝆 1 − 𝝆𝝆

 Equation (17) 

Equation (17) expresses the extra cost of error correction per character, in seconds or milliseconds. As 

values for 𝝆𝝆  are likely smaller than 20% in any practically useful system and using a first order 

approximation, one can state that this means that that error correction effort is approximately directly 

proportional to the reliability of the user and the system, see also Figure 30. 

4.1.7 The Cost of Error Correction vs. Error Correction Time 

𝑻𝑻  does not predict the time it takes to correct n characters of errors. Instead, it predicts the extra time it 

will require on average per character to fix errors with a given text entry technique—regardless if a mistake 

was made on that character or not. For example, if there are 𝑥𝑥 characters in a phrase then one can say on 

average it will take additional 𝑻𝑻  seconds per character while inputting text with the evaluated technique. 

In contrast, 𝑻𝑻  predicts the time necessary to correct an erroneous character in a single attempt, see 

Equation (12). Thus, one may use the latter as a measure for the error fixing time for a specific technique. 

4.1.8 Limitations of the Model 

The new model targets the cost of error correction in character-based techniques where texts are inputted 

one character at a time. As such, it cannot be applied directly to word-based techniques such as speech, 

gesture, and handwriting recognition, where texts are inputted word by word. Also, the new model may not 

apply to more general text entry, as it assumes human error correction behaviors that were identified in the 
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user study in Section 3.1, where participants transcribed only short English phrases. This model will likely 

also not work without changes for multi-modal or predictive techniques and scanning keyboards. The 

reason is that the process of entering text and correcting errors is different from character-based techniques. 

This model also does not account for environmental distractions such as noise and/or motion. But note that 

practically all models for input tasks in human-computer interaction (HCI) assume a distraction-free 

environment. 

 Parameter Values 4.2

Obtaining the necessary parameters for the new model typically requires controlled experiments. Some of 

the parameter values are largely independent of a specific technique. This is especially true for the human-

specific ones. Other values can be collected from the existing literature on text entry techniques. However, 

some values need to be found experimentally, such as when new techniques are tested or for existing ones 

that have not been well studied. To help in some of these situations, this section presents several alternatives 

to derive various parameter values from commonly used performance metrics. For better representation, 

prime symbols differentiate the derived values from the directly measured ones. 

4.2.1 Calculating the Correction Time (𝑻𝑻𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) 

WPM is the most frequently used empirical measure of text entry performance. This metric is defined in 

Equation (4). From this, one can approximate 𝑻𝑻 , the sum of the time to correct an erroneous character 

by the user and the time to process and display the corrected input by the system (as explained in Section 

4.1.3), using the following equation. 

𝑻𝑻 =     
60

𝑊𝑊𝑊𝑊𝑊𝑊 ∗ 5
∗ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 + 1  Equation (18) 

Here, 
∗

 is the time it takes to enter a character, see the derivation of Equation (4). The mental 

preparation time 𝑻𝑻  was not added, as it has already been accounted for in the WPM value. Besides, 

WPM does not differentiate between the number of keystrokes made, the cognitive, or the motor time 

during text entry. Based on this approximation, one can estimate 𝑻𝑻  using Equation (12). 
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4.2.2 Calculating the Probability of Error (𝝆𝝆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆) 

It is standard practice to present error rates along with WPM when introducing or comparing text entry 

techniques. Recall from Section 2.4 that errors are usually calculated with one of four error metrics: ER, 

EKS, TER, or MSDER. These metrics represent the combined errors committed by the human and the 

system. Hence, one can directly use these values as an approximation for the (compound) probability of 

error. The two error metrics ER and MSDER are practically equivalent. However, both do not consider the 

effort that was put into correcting errors. If users reliably corrected every erroneous character, these two 

metrics would still report the same value as if the text were entered error free from the start. EKS considers 

the cost of committing errors to some extent, but fails to show an accurate picture when some errors were 

not corrected. TER overcomes these shortcomings by computing the ratio between the total number of 

incorrect and corrected characters and the total effort to enter the text, providing more insight into the 

behaviors of the participants. Thus, TER yields a better approximation to 𝝆𝝆  compared to the others. 

4.2.3 Calculating the Probability of Noticing an Error (𝝆𝝆𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) 

The error recognition delay is well described in Section 4.1.5 by an exponential distribution. Hence, it is 

possible to calculate 𝝆𝝆  using Equation (14), as illustrated in Figure 28. There, one can see that almost 

50% of all errors are noticed right after they are committed. One can assume that is a behavioral “constant”, 

which does not vary across techniques. Therefore, the data presented in Figure 28 together with the 

approximation 𝝆𝝆  should be applicable to any techniques where text is entered one character at a time. 

 Values from the Literature 4.3

This section collects data from the literature to approximate the parameters necessary to compute 𝑻𝑻  for 

several popular character-based text entry techniques, presented in Table 4. 

The time it takes to perform a mental act depends on what cognitive processes are involved and is highly 

variable from situation to situation, or person to person. However, Kieras (1993) argued that one could 

assume that for routine thinking these pauses are fairly uniform in length. Based on this argument, Table 4 

reports the same preparation 𝑻𝑻  and verification 𝑻𝑻  times for unambiguous keyboards. Table 4 also 

presents the same value for the input time 𝑻𝑻  for novices and experts for stylus-based virtual Qwerty 

keyboards. This is based on the observation that there is probably only a small, perhaps negligible, difference 
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between novices and experts in the motor act of tapping a key with a stylus (MacKenzie and Zhang, 2001). 

The table, however, do not include system-specific parameters, since such parameters are negligible in 

widely used text entry techniques. In particular, the reliability of keyboards is extremely high and the time 

to process and display a character is usually very low, at least compared to the human parameters. How and 

Kan (2005) performed a user study to derive the “repeated keystroke time” and the “compound time of 

moving fingers and pressing a key” for the standard mobile keypads. The table subtracted the “repeated 

keystroke time” from the later to calculate the movement time 𝑻𝑻 . Finally, 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾  is 1 for Qwerty, 

stylus-based virtual Qwerty, or similar keyboards, since these have dedicated keys for all English letters. 

Table 4. Human-specific parameter values for three text entry techniques, collected from the literature. All 
timings are in seconds. 

 Qwerty Virtual Qwerty 
(Stylus) 

Mobile Keypad 
(Multi-tap) 

Novice Expert Novice Expert Novice Expert 
𝑻𝑻  1.2 4 0.6 4 0.951 7 0.6 4 1.285 6 0.6 4 
𝑻𝑻  0.4 1 0.4 1 0.4 1 0.4 1 0.96 3 0.23 2 
𝑻𝑻  1.2 1 0.12 1 0.153 7 0.153 7 1.21 3 0.39 2 
𝑻𝑻  1.2 4 0.6 4 0.951 7 0.6 4 0.411 6 0.411 6 
𝝆𝝆  0.018 8 0.0576 8 0.091 8 
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾  1 1 2.0342 5 

References: 1 (Card et al., 1980), 2 (Holleis et al., 2007), 3 (Hudson et al., 1999), 4 (Kieras, 1993), 5 (MacKenzie, 
2002), 6 (Pavlovych and Stuerzlinger, 2004), 7 (Soukoreff and MacKenzie, 1995), 8 Chapter 3 User Study. 

4.3.1 Prediction and Comparison 

Based on the data reported in Table 1 and Table 4, the cost of error correction 𝑻𝑻  is predicted here for 

three popular text entry techniques: standard Qwerty keyboard, stylus-based virtual Qwerty keyboard, and 

the standard mobile keypad. It is not surprising that the mobile keypad requires the most time with a 𝑻𝑻  

of about 0.8 seconds per character, while the Qwerty keyboard has the lowest with a 𝑻𝑻  of about 0.1 

seconds per character, see Figure 29. 

As cross-validation, the cost of error correction 𝑻𝑻  was also predicted using Equation (17) from WPM 

values measured in the user study in Chapter 3. The intention was to observe if deriving 𝑻𝑻  from 

WPM for 𝑻𝑻  gives a closer approximation to the 𝑻𝑻  from measured 𝑻𝑻 . The result is illustrated in 

Figure 29, where one can see that both calculations yield approximately the same result. 
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Figure 29. Comparison of the (predicted) cost of error correction per character (𝑻𝑻𝒇𝒇𝒇𝒇𝒇𝒇   in seconds) for different 
text entry techniques. The values are calculated from entry speed (WPM) measured in a user study and from 

human parameters collected from the literature. 

 System-Specific Predictions 4.4

As discussed earlier, system-specific parameters are usually not significant in commonly used techniques, 

such as a Qwerty keyboard. This is because most of these techniques are able to process user input with 

high accuracy and can display the result in very small time frames. However, in some techniques the 

system specific parameters may become an important factor. In order to analyze the effect of increasingly 

error prone techniques on the cost of error correction 𝑻𝑻 , the probability of system error 𝝆𝝆  was 

gradually increased using the data presented in Table 4. The results show that the predicted 𝑻𝑻  increases 

approximately linearly as the probability of a system error increases, as visualized in Figure 30. To verify 

this prediction, an empirical study was conducted to observe if this is true in a real-life scenario. 

 
Figure 30. The increase in the cost of error correction prediction (𝑻𝑻𝒇𝒇𝒇𝒇𝒇𝒇 ) as the probability of system error 

(𝝆𝝆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒔𝒔 ) increases. 
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Note that the value of 𝑻𝑻  estimated for the standard Qwerty keyboard with no system errors (𝝆𝝆 = 0) 

is slightly higher in Figure 30 (about 0.15 seconds) compared to Figure 29 (about 0.10 seconds). This is 

because Figure 29 shows a 𝑻𝑻  value obtained by averaging the parameter values for both novice and 

expert users, while Figure 30 uses only novice users. The derivation also assumes that routine thinking 

pauses for general, non-expert users are very close to those of novices (Kieras, 1993). 

 A User Study 4.5

The purpose of this study was to observe the effect of various (injected) system error rates on the measured 

cost of error correction 𝑻𝑻 . Here, a system error signifies an erroneous output by the system. For instance, 

the system erroneously outputs “a” when the user inputted “b”. Section 4.5.3 discusses this in detail. Thus, 

the study tested the following hypothesis: 

(H1 C4) The cost of error correction (Tfix) for a text entry technique increases in proportion with increasing 

probability of (injected) system errors. 

4.5.1 Participants 

Twelve participants, aged from 22 to 46 years, average 28, took part in the user study. Appendix A3 explains 

the procedure used to decide the number of participants (sample size). They were recruited through local 

university e-mailing lists, posting flyers on campus, and by word of mouth (convenience sampling). Only 

experienced standard Qwerty keyboard users and fluent English speakers were recruited for the study to 

minimize learning effects. Towards this, people with less than eight years of standard Qwerty keyboard 

experience were excluded from the study. They were either native speakers or had spent at least five years in 

an English-speaking environment. Three of them were female and all of them were right-hand mouse users. 

4.5.2 Apparatus 

A Compaq KB-0133 Qwerty keyboard and an IBM 19″ CRT monitor at 1280×960 pixel resolution were 

used during the study. A custom Java application logged all keystrokes with timestamps during text entry 

and calculated user performance directly. The 460×500 application window was positioned at the center of 

the computer screen. A fifteen point Tahoma font was used to present text on the application. Figure 31 

illustrates the study setup. 
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4.5.3 Procedure 

During the study, participants entered short English phrases from a phrase set (MacKenzie and Soukoreff, 

2003). The corpus does not contain any numeric and special characters, and all uppercase characters were 

converted to lowercase. It was selected because of its high correlation with the character frequency in the 

English language. Also, it is widely used in recent text entry studies. This makes this work comparable to 

others’. See Appendix A2 for more information on the set. The phrases were displayed to participants one 

at a time on the screen in a dialog. They were asked to take the time to read, understand, and memorize the 

phrases, to enter them as fast and accurate as possible, and to press the Enter key when they were done to 

see the next phrase. Timing started from the entry of the first character and ended with the last (the character 

before the Enter keystroke). Participants were informed that they could rest between conditions or before 

inputting a phrase. 

Five injected system error rates 𝝆𝝆  were tested: 1, 2, 5, 10, and 20%. In order to imitate system error, 

the keyboard’s input system was altered to output a predetermined amount of error prone characters, 

proportional to one of the five mentioned rates. Although the amounts were predetermined, the actual errors 

were generated randomly by replacing the inputted character with the surrounding ones on a Qwerty layout. 

For example, the letter “H” was randomly replaced by one of the surrounding letters “Y”, “U”, “J”, “N”, 

“B”, or “G”. Similarly for all other keys. The injected system error conditions were presented to the 

participants in random order. Participants were informed prior to the study that the used keyboard is not 

100% trustworthy and sometimes makes mistakes in interpreting the input. They were asked to work 

normally. That is, they should correct their errors as they notice them. They were also told that they could 

use any edit function, navigation key, or the mouse to correct errors. The system calculated the average 

entry speed (WPM), error rate (TER), output time (𝑻𝑻 ), and the cost of error correction (𝑻𝑻 ). Recall 

that 𝑻𝑻  is the sum of the time to correct an erroneous character by the user and the time to process and 

display the corrected input by the system, while 𝑻𝑻  is the extra time it requires on average per character to 

fix errors with a particular text entry technique. 

4.5.4 Design 

A within-subjects design was used. The within-subjects factor focused on five injected system error rates: 

1, 2, 5, 10, and 20%. The dependent variables (and the metrics) were entry speed (WPM), error rate (TER), 

the output time (𝑻𝑻 ), and the cost of error correction (𝑻𝑻 ). Section 2.3, 4.1.3, and 4.1.6 defined these 



 

 

80 

metrics. There were three segments. Each segment contained five blocks, representing the five injected 

system error rates. In each block, participants were asked to complete sixteen phrases, excluding two 

practice phrases. In each segment the blocks were presented randomly to minimize the effect of asymmetric 

skill transfer. In summary, the design was: 

12 participants × 

3 segments × 

5 blocks (within-subjects factor: 1, 2, 5, 10, and 25% injected system error rates, randomized) × 

16 short English phrases 

= 2,880 phrases, in total. Each participant entered 240 phrases. 

 

 
Figure 31. A participant inputting short English phrases during the user study. 

4.5.5 Results 

The whole user study lasted from 45 to 75 minutes including the demonstration, practice, and breaks. The 

highest and lowest average entry speeds were 13 and 93 WPM. Similar to the results reported in Chapter 3, 

participants used Backspace 99% of the time to correct their errors, even though they were able to use any 

edit operation, including keyboard shortcuts and the mouse. 

D’Agostino Kurtosis tests on the dependent variables revealed that the data were normally distributed. 

Also, a Mauchly’s test confirmed that the data’s covariance matrix was circular in form. Thus, repeated-

measures ANOVA was used for all analysis. The statistical tests used a significance level (α) threshold of 

5%. That is, the null hypothesis was rejected when a probability value was below 5%. All statistically 

significant results are presented with effect size (η2) and power (1–β). See Appendix A1 and A4 for more 

information on η2 and 1–β, respectively. 
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4.5.5.1 Entry Speed and Error Rate 

An ANOVA revealed that there was a significant effect of injected system error rate on both entry speed 

(F4,11 = 86.05, p < .0001; ɳ2 = .42, 1–β = 0.99) and error rate (F4,11 = 787.61, p < .0001; ɳ2 = .94, 1–β = 1.0). 

A Tukey-Kramer test showed that the 10 and 20% injected system error rates had significantly lower entry 

speed and higher error rate compared to the 1, 2, and 5% conditions. As a reference, an average entry speed 

of 57.78 WPM (SD = 20) was recorded for text entry in a pilot study without injected system errors (0%). 

This is higher than the performance levels for 1 and 2% injected system errors, but not significantly so (t2 = 

17.12, p = 0.25). Figure 32 and Figure 33 show the average entry speed (WPM) and error rate (TER), 

respectively, for all conditions. 

 
Figure 32. Average entry speed (WPM) for all injected system error rates (𝝆𝝆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒔𝒔 ).  

Error bars represent ±1 standard deviation (SD). 

 
Figure 33. Average error rate (TER) for all injected system error rates (𝝆𝝆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒔𝒔 ).  

Error bars represent ±1 standard deviation (SD). 
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4.5.5.2 The Output Time 

An ANOVA on the data identified a significant effect of injected system error rate on the output time 

𝑻𝑻  (F4,11 = 15.54, p < .0001; ɳ2 = .06, 1–β = 0.04). A Tukey-Kramer test showed that the 10 and 20% 

injected system error rates had significantly higher output time compared to 1, 2, and 5%. Figure 34 

illustrates the average output time 𝑻𝑻  for all conditions. 

 
Figure 34. Average output time (𝑻𝑻𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐) for all injected system error rates (𝝆𝝆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒔𝒔 ).  

Error bars represent ±1 standard deviation (SD). 

4.5.5.3 (Injected) System Error Analysis: Empirical Validation 

The data corresponds well to the new model’s primary prediction: the cost of error correction increases 

more or less linearly as the probability of a system error increases. Figure 10 visualizes this relationship. 

There, one can see that the study data fits a linear function reasonably well, with R2 = 0.9229. An ANOVA 

revealed that there was a significant effect of injected system error rate on the cost of error correction 

(F4,11 = 1108.42, p < .0001; ɳ2 = .02, 1–β = 0.01). Figure 35 illustrates the predicted and observed increase 

in the cost of error correction (𝑻𝑻 ) as the system error rate increases. 
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Figure 35. The increase in the cost of error correction (𝑻𝑻𝒇𝒇𝒇𝒇𝒇𝒇) as the probability of system error (𝝆𝝆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒔𝒔 ) increases. 

Error bars represent ±1 standard deviation (SD). 

4.5.6 Discussion 

The results of the study support acceptance of the hypothesis H1 C4 (see Section 4.5). The results match the 

nature of predictions of the model—the data fits a linear approximation reasonably well. See Figure 36. It is 

unclear why error fixing efforts were higher for the 10% value. One potential explanation is that 

participants may have treated both the 10% and 20% injected error rate conditions in the same way—“just 

an unreliable system”. It is not possible to directly compare the data from this study with the initial data 

source presented in Chapter 3, as the average entry speed was substantially higher in the previous study (76 

WPM) due to the screening for participants with high text entry speeds. 

It is interesting to see that low injected system error rates (1% and 2%) had no significant effect, even 

though the text entry performance was somewhat lower (see Figure 33). The most probable reason is that 

such low error rates are indistinguishable from the average human error rates (1.8% for experienced users, 

see Table 1 in Section 2.4). This can be considered as an indication that keyboard failure rates of 1-2% are 

somewhat acceptable and have only a small negative effect on human performance, in the order of 7 to 8%. 

However, an error rate of 5% (95% reliability) yields a noticeable 26% drop in performance. A reliability 

of 80%, respectively 90%, approximately halves the entry speed (see Figure 32). This underlines how 

important reliability is for text entry techniques. 
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Figure 36. The increase in predicted 𝑻𝑻𝒇𝒇𝒇𝒇𝒇𝒇  and observed 𝑻𝑻𝒇𝒇𝒇𝒇𝒇𝒇 as the probability of system error 𝝆𝝆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒔𝒔  increases. 

4.5.7 Generalization to Other Techniques 

Theoretically, the new model and the predictions it generates are directly applicable to other character-

based keyboards and mobile keypad. If one can assume 100% reliable keys, only a derivation of the value 

of 𝑻𝑻  for each distinct technique in necessary. 

Another potential application area for this work is virtual keyboards whose keys are too small to be hit 

reliably with a human finger, because the buttons are much smaller than the fingertip. There are currently 

many mobile phones that employ touchscreens together with small screen sizes. Due to the lack of tactile 

feedback, such techniques are likely fundamentally different from mini-Qwerty keyboards. One could then 

model the ratio of the size of a fingertip relative to the displayed button size as a measure of keyboard 

reliability. With this, it may be possible to predict the effect of varying button sizes in virtual keyboards. 

Thus, it should be possible to predict some of the results of a recent evaluation (MacKenzie, 2002) of 

touchscreen keyboards, assuming 𝑻𝑻  has been characterized. 

Table 5. Detected effect size and measured statistical power. 

Dependent Variable Effect Size (η2) Power (1–β) 
WPM Large > 0.80 
TER Large > 0.80 
𝑻𝑻  Medium << 0.80  
𝑻𝑻  Small << 0.80 



 

 

85 

4.5.8 Limitations 

The ANOVAs identified a significant effect of injected system error rate on entry speed (WPM), error rate 

(TER), output time (𝑻𝑻 ), and the cost of error correction (𝑻𝑻 ). A post-hoc analysis detected a large 

effect size for WPM and TER, a medium effect size for 𝑻𝑻 , and a small effect size for 𝑻𝑻  (see 

Appendix A1). Further post-hoc analysis revealed that the statistical power exceeded the 0.80 threshold 

(see Appendix A4) at the observed small to large effect size levels for all dependent variables, except for 

𝑻𝑻  and 𝑻𝑻 , see Table 5. In other words, there was less than adequate statistical power for 𝑻𝑻  and 

𝑻𝑻 . While a larger sample size (N) might be necessary to achieve a sufficiently strong statistical power for 

𝑻𝑻 , due to the medium effect size, there is a possibility that 𝑻𝑻  does not have a sufficiently strong 

effect after all. Alternatively, and due to the small effect size, it is less likely that a larger sample size (N) 

would achieve a sufficiently strong statistical power for 𝑻𝑻 . Appendix A4 elaborates on the criteria used 

for calculating statistical power. 

As the study recruited participants by using convenience sampling from the university community, the 

results may not generalize to a larger population. Nevertheless, an attempt was made to counteract this 

confound by recruiting not only university students but also instructors and staff. 

 Summary 4.6

This chapter investigated human error behavior in character-based text entry. Based on the transcription 

typing phenomena listed in Section 2.5 and the behaviors observed in Chapter 3 user study, a new model 

for predicting the cost of error correction is proposed. The model is verified against values derived from the 

literature and by conducting a user study. 

The model predicted, and later the results of the study verified, that users’ text entry performance decay as 

the system becomes more and more unreliable (error prone). This phenomenon may make one wonder, do 

users adapt to faulty systems (or to the errors) to improve their overall text entry performance? The following 

chapter attempts to answer this. 
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Chapter 5  

Adapting to a Faulty Unistroke Gesture Recognizer 

Although the origin of the famous quote, “That’s not a bug, it’s a feature” is unknown (Hafner, 2008), the 

computer science community is well aware of its implications. It points towards a phenomenon observed in 

many paradigms, including human-computer interaction, and programming languages. The quote refers to 

the possibility that practitioners will adapt to a non-fatal bug or system error if it remains in the system for 

long enough. Once users get accustomed to a system error they either actively avoid repeating actions that 

cause the error or start treating it as a feature. Such behavior can be indirectly explained through theories of 

learning, as explained in Section 1.1 and Section 2.6. Regardless of the detailed explanation, these theories 

imply that it is important to reduce mistakes to learn correct responses. 

Section 2.2.8 provided a review of the well-known academic and commercial gesture-based techniques, 

gesture recognition approaches, and the challenges these techniques face. Briefly, it has been established 

that for both touchscreens and digital pens, current gesture-based techniques are error-prone, primarily due 

to imperfections in the underlying technologies (Mankoff and Abowd, 1999; Shilman et al., 2006). Recent 

works mostly focus on improving recognition accuracy by developing new recognition algorithms or by 

limiting drawing variations, such as permitting only a single way to draw a gesture. Several works focus on 

user tolerance; that is, how error prone a system has to be for the users to abandon it, also discussed in 

Section 2.2.8. However, not much work has been done on how users interact with an error prone gesture 

recognizer that frequently misrecognizes gestures. Do they adapt to the recognition errors? Is there a 

relationship between recognition error rates and the rate at which users adapt to these errors? Answers to 

these questions are vital as these may provide designers with guidance for future work on such technologies. 

Based on the observations from several pilot studies, reported outside of this thesis (Arif and Stuerzlinger, 

2012), this work hypothesizes that users gradually adapt to misrecognition errors and that this adaptation 

rate depends on how frequently such errors occur. That is, users adapt to such an error faster if it occurs 

more frequently. In an attempt to verify this hypothesis, this chapter presents the results of two user studies. 

It also speculates on the practical implications of this work. 
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 The Custom Software 5.1

This section discusses the custom software used during both user studies. The software was designed in 

accordance with current trends in human and system error handling as well as the provision of alternative 

gesture sets for gesture-based techniques, as explained in Section 2.6.7. The software was also fine-tuned 

through several pilot studies reported elsewhere (Arif and Stuerzlinger, 2012). The intention was to 

increase the external validity of this work by making the experiment software reasonably comparable to 

existing systems. 

5.1.1 Gesture Recognition 

The application used the $1 Unistroke Recognizer to process pen-based gesture input (Wobbrock et al., 

2007). This recognizer was designed for rapid prototyping of gesture-based user interfaces. It recognizes 

gestures using a nearest-neighbor classifier with a Euclidean scoring function, similar to a geometric 

template matcher. This approach is different from the original Unistrokes and Graffiti gesture recognition 

strategies (see Section 2.2.8). The $1 recognizer was used because, first of all, it is easy to deploy. Second, 

the focus here is on how users adapt to (injected) misrecognition errors and not (directly) on the underlying 

recognition strategies. And, finally, it performs well for a limited number of gestures based on very few 

templates. A user study reported 99% accuracy for sixteen gestures with three or more loaded templates 

(Wobbrock et al., 2007). The custom application developed here used fourteen gestures and loaded seven 

templates for each, which should make the system perform equivalent to other recent recognizers in the 

field. Also, see Section 5.1.3. 

5.1.2 Supported Gestures 

During the studies, participants inputted seven English letters, specifically “B”, “D”, “O”, “Q”, “R”, “W”, 

and “Y”. The custom software presented one letter at a time on the screen. Participants then had to input the 

presented letter with the pen on a graphic tablet using either Graffiti or Unistrokes. The system used Graffiti 

as the primary method of inputting the letters, while the Unistrokes were used as alternatives. That is, users 

were expected to primarily use Graffiti to input the letters, but were permitted to use Unistrokes if they felt 

their use necessary; i.e., to bypass (injected) misrecognition errors. Section 5.1.4.1 elaborates on this. 
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5.1.2.1 Unistroke vs. Multistroke Gestures 

A unistroke gesture system was used instead of a multistroke one, as the latter systems usually permit 

different approaches for drawing the same letter. This makes it more challenging to recognize a performed 

gesture. It also makes it difficult to automatically identify human errors due to variations in gesture drawing 

across users. Section 2.2.7 elaborated on these aspects. Besides, due to multiple possible drawing variations 

for the same letter, users often struggle to identify their mistakes and to discover the right way for drawing 

a letter with multistroke systems. The $N Recognizer, for example, often fails to correctly recognize a 

gesture when users use more strokes than the number of strokes used to define said gesture (Anthony and 

Wobbrock, 2012). With adaptive multistroke recognizers, such as Gesture Search (Li, 2010a), it is difficult 

to isolate the human adaptation rate as the system adapts to human behaviors as well. Unistroke gesture 

systems usually do not suffer from such problems (Tappert and Cha, 2007). A more recent multistroke 

recognizer, $P Recognizer, resolves these issues (Vatavu et al., 2012), but was proposed after the 

completion of these studies. 

5.1.2.2 Primary vs. Alternative Gestures 

Graffiti and Unistrokes were selected as primary and alternative method for drawing the letters for two 

reasons. First, a longitudinal study did not find any significant difference between these techniques’ entry 

speed, correction rate, and preparation time (Castellucci and MacKenzie, 2008). Second, Graffiti was selected 

as the primary method, as in almost all unistroke-based techniques the primary method is relatively more 

intuitive and easier to guess than the alternative one, see Section 2.6.7.1. The above-mentioned study reported 

that users find Graffiti more intuitive than Unistrokes due to the gestures’ resemblance to their corresponding 

English letters. In Figure 37, one can see how the primary Graffiti gestures look like their printed counterparts. 

In addition, participants were encouraged to practice the primary gestures before the main studies, to 

familiarize participants (to a limited degree) with Graffiti, see Section 5.2.3. With this experimental design 

one can assume that any performance effect due to switching the gesture drawing method (from primary to 

alternative and vice versa) mid-study will be predominantly attributable to adaptation. 

 
Figure 37. The seven letters and their corresponding gestures. The primary ones (above) are from Graffiti letter 

set, while the bottom ones (the alternatives) are from Unistrokes. Here, a dot indicates the start of a stroke. 
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5.1.2.3 Discoverability 

Section 2.6.7.1 mentioned how in most gesture-based techniques alternative input methods are relatively 

harder to discover compared to the primary method. To discover alternative gestures with such techniques, 

one has to either go to an extended tutorial or guess. Following this, the custom software displayed the 

primary gestures in a panel at all times and presented the to-be-inputted letters in Graffiti. To discover an 

alternative gesture for a particular letter, users had to tap or right-click on the corresponding primary 

gesture in the panel. This displayed the alternative gesture for that letter for two seconds, and then returned 

to the original state, that is, displayed the primary gestures. Figure 38 illustrates this. 

 
Figure 38. The custom software used during the studies. The to-be-inputted letter is presented using the primary 
gesture. To discover the alternative method for that letter one has to tap on the corresponding primary gesture 

in the bottom panel. 
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5.1.3 Errors and Error Handling 

Section 2.6.7 discussed that two types of errors occur in most gesture-based techniques: failure to recognize 

error and misrecognition error. 

Similar to other gesture-based systems and based on pilots, the system reported a failure to recognize error 

when the total number of recorded candidate points (x and y coordinates) was less than ten; i.e., when the 

stroke was much too short to be a gesture. Results of the pilots revealed that such gestures are almost 

always caused by accidental interactions. Examples are that users exited drawing prematurely, tapped on 

the graphic tablet with the pen, or pressed the buttons on the pen by mistake. However, this threshold may 

be different for different devices as the rate in which candidate points are recorded are dependent on the 

sensing hardware and input software. Similar to many gesture-based techniques, as described in Section 

2.6.7, the custom software provided visual feedback on failure to recognize errors. The inputted gesture 

field, in top-right corner of Figure 38, displayed a special symbol in case of accidental interactions. Figure 

39 shows this symbol. 

 
Figure 39. The special symbol displayed in the inputted gesture field in case of accidental interactions. 

A misrecognition error was identified when the recognized gesture did not match the presented gesture. 

Similar to almost all gesture-based systems, the custom software displayed the misrecognized gesture in the 

inputted gesture field. For example, when “O” was misrecognized as “Q”, the system displayed “Q” in the 

inputted gesture field. In addition, auditory feedback was provided on both instances. That is, the system 

made a “ding” noise when it identified a failure to recognize or misrecognition error. 

5.1.3.1 Raw Recognition Error Rate 

In a pilot study with eight novice users (four female, average 21 years, all right-handed), where each user 

inputted the seven Graffiti gestures (see Figure 37) for forty times with the custom software without error 

injection, the system recorded 0.3% failure to recognize and 0.7% misrecognition errors; i.e., 1% system 

error rate. In other words, the overall accuracy rate was 99%, which matches the gesture recognition 

performance of prior work (Wobbrock et al., 2007). 
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5.1.4 Injected Misrecognition Errors 

The main purpose of this work is to investigate (whether and) how users adapt to misrecognition errors. 

Thus, a few primary gestures were randomly selected during the user studies and injected with synthetic 

misrecognition errors at different rates. That is, the system intentionally misrecognized these gestures at the 

given rates. For instance, if the primary gesture for “D” was injected with 5% synthetic misrecognition 

error, then five out of hundred times the system would intentionally misrecognize this gesture and would 

randomly display a similar gesture in the inputted gesture field, such as “B”, “C”, “O”, or “Q”. The system 

injected misrecognition error instead of failure to recognize error, as misrecognition is the most common 

type of error in gesture-based techniques (see Section 2.6.7). Only the primary gestures were injected with 

these errors. 

Any potential bias in simulated gesture recognition errors was accounted for by randomly selecting a different 

set of letters for error injection for each participant. Another design constraint for the user studies is that with 

increasing gesture set size, error occurrences naturally decrease, which makes such errors then progressively 

harder to study. Consequently, the studies used only seven letters and the implementation used well-tuned 

gestures. As mentioned above, in the absence of injected errors, users encountered only 1% “system” errors. 

Such a small error rate is well below what can be studied in short-term studies. Consider that an error rate of 

1% means that system errors occur only once for every hundred such letters entered. In the reported studies, 

participants entered 630 gestures within an hour or more. Thus they would see only 6-7 errors, which is too 

small to study adaptation. 

5.1.4.1 Bypassing Injected Errors 

Findings from pilot studies reported elsewhere (Arif and Stuerzlinger, 2012) indicate that users attempt to 

bypass misrecognition errors in two different ways. They either draw a frequently misrecognized gesture 

relatively slowly or start using an alternative method (if available) for drawing such a gesture. The first 

approach affects one’s entry speed, as it takes more time to input gestures than the usual. In contrast, the 

second does not compromise entry speed, assuming that the alternative method is not more complex than 

the primary. Thus, the latter approach is a better choice for experiments, as entry speed will vary less. Tu et 

al. (2012) provides a methodology for classifying gestures into simple, medium, and complex categories. 

Besides, with only a single “faulty” gesture set (and no alternatives), users are effectively stuck. If they fail 

to recognize the failure patterns, they need to adapt or, failing that, can only abandon the system. In many 
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real world situations, they would most probably abandon the system, as there are other ways to achieve 

their tasks. Consequently, many recent real world systems, see above, include gesture variations 

(alternative gestures) as a way to address this problem. To keep the results externally valid, this work chose 

to provide alternative gestures. 

To address the issues around speed, the studies indirectly discouraged participants from drawing gestures 

slowly. First, users were informed prior to the studies that taking more time to draw a gesture might not 

enhance the system’s recognition rate. Second, and in the practice period prior to the main studies, see 

Section 5.2.3, most users would realize that an inputted gesture does not have to be an exact match of the 

displayed one for the system to recognize it—so that (subconsciously) they would be much less motivated to 

draw gestures slowly. 

5.1.5 The Seven Letters vs. Short English Phrases 

Early on, a decision was made against the use of short English phrases in the studies. Two reasons 

motivated this. First, using English phrases would require injecting recognition errors based on letter 

frequencies to maintain uniformity. This needlessly complicates and lengthens the studies. Second, a pilot 

showed that inputting English phrases with an untrustworthy gesture-based system causes a high level of 

user frustration, which may negatively bias study results. 

Similarly, a decision was made against using a complete gesture alphabet. The reason is that users need to 

experience enough injected misrecognition errors during the study duration (60-90 minutes) to be able to 

adapt to the system. This is vital, as a 5% injected error rate means that users will only face five injected 

errors in one hundred attempts. The use of seven letters assured that each letter appeared for a sufficient 

number of times. This does not invalidate this work, as the focus here is on how users adapt to (injected) 

misrecognition errors and not (directly) on how the overall text entry performance is affected. 

5.1.6 Justification for a Short-term Study 

While it is important to understand gradual adaptation over time, short-term usability is today a strong 

determinant in product success. If users do not see reliable enough performance in the short term, a product 

is likely to fail. Consequently, long-term investigations are interesting, but do not help in situations where 

users get frustrated up-front. This is a global issue that gesture recognizers have to contend with today.  
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5.1.7 Performance Metrics 

The following metrics were calculated during the studies. 

 Alternative Method Usage (AMU): The rate (%) at which the alternative method was used to 

input letters. As users were free to use either the primary or the alternative method to input/re-

input a letter, this metric enable us to measure the rate at which users adapted to the alternative 

gestures. 

 Input Time (𝑻𝑻 ): This represents the average time (in milliseconds) it took to input a letter. 

This metric captures the performance aspect of learning. We also use this to analyze performance 

across different misrecognition rates. Input time was also discussed in Section 4.1.1. 

 Gestures per Character (GPC): This denotes how many gestures it took on average to input a 

letter (Wobbrock et al., 2003). As most unistroke methods have dedicated gestures for all English 

letters, a flawless system will require a GPC of one, providing there was no human error. This was 

calculated to provide an overall picture of the input process, and to check whether the more faulty 

letters yield higher GPCs compared to less faulty ones, as one might expect. 

 User Study 1 5.2

This study investigated users’ adaptation behavior for injected misrecognition error rates from 0 to 30%. In 

other words, the study tested the following hypothesis: 

(H1 C5) While inputting letters with a unistroke-bases system, users adapt to frequently misrecognized 

letters by replacing the primary gesture for inputting those letters with the alternative ones (if available) at 

rates relative to those letters’ misrecognition rates, providing that improving drawing quality does not 

improve its recognition rate. 

5.2.1 Participants 

Twelve participants, aged from 21 to 30 years, average 25, participated in the study. Appendix A3 explains 

the procedure used to decide the number of participants (sample size). They were recruited through online 

social communities, local university e-mailing lists, by posting flyers on campus, and by word of mouth 

(convenience sampling). None of them had prior experience with pen-based devices. They were also unaware 
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of the existence of Unistrokes and Graffiti. Seven of them were female and one was a left-hand pen user. They 

all received a small compensation (CAD 10.00) for their participation. 

 
Figure 40. A participant drawing gestures using a digital pen on a Bamboo Pen & Touch Graphic Tablet. 

5.2.2 Apparatus 

The custom application described in Section 5.1 was used during the study. It was developed with the 

default Bamboo Mini SDK 2.1. The application was displayed on a 15.4″ Compaq Presario C700 Notebook 

PC at 1280×800 pixel resolution. Participants interacted with the application through a digital pen on a 

Wacom Bamboo Pen & Touch Graphic Tablet, as illustrated in Figure 40. The device’s 14.73×9.14 cm 

active area was calibrated with respect to the application window. Its multi-touch input capability was 

disabled to permit participants to rest their hands on the surface while using the pen. The orientation of the 

tablet and the default firmware was adjusted to accommodate for left- and right-handedness. The custom 

application logged all interactions with timestamps and calculated user performance directly. 

5.2.3 Procedure and Design 

The experiment setup and software was first demonstrated to users. The experimenter verified that 

participants understood the primary (Graffiti) and the alternative (Unistrokes) gestures, the failure to 

recognize and the misrecognition errors (see Section 5.1.3), and knew how to discover alternative gestures 

(see Section 5.1.2.3). 

A practice period followed the demonstration. During practice, participants were asked to input the seven 

letters five times using the primary method without error injection. The intent was to familiarize them with 

the setup. This also gave them some experience with how similar the presented and the performed gestures 
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needed to be for the system to recognize them accurately. Participants were able to extend the practice 

period (at most twice), as desired. 

The main user study started roughly two minutes after the practice. In that part, participants inputted letters 

in random order and each of the seven letters occurred ninety times. Thus, each participant inputted in total 

630 letters. Three out of the seven letters were randomly picked by the system and injected with 10, 20, and 

respectively 30% synthetic misrecognition errors (see Section 5.1.4). That is, in ten, twenty, and thirty out of 

hundred attempts the corresponding letters were intentionally misrecognized by the system. That is, the 

system displayed a similar letter instead of the recognized one, as discussed above. Only three letters were 

injected with synthetic misrecognition errors, to ensure that the faulty letters do not dominate the overall 

input process. 

The letters were displayed one at a time on the screen. Participants had to input each presented letter using the 

pen and the graphic tablet using predominantly the primary method (Graffiti). They were informed that, 

unlike in the practice period, the system might not be entirely reliable. That is, it may misrecognize some of 

the letters, even when they were inputted correctly. However, they were not informed about error rates or 

the number of letters where synthetic misrecognition errors were injected. 

A gesture was recorded from the moment one touched the graphic tablet with the pen (touch-down) to the 

moment it was lifted (touch-up). Upon completion of input, the recognized and the next to-be-inputted 

letters were displayed on the screen automatically, as illustrated in Figure 38. Participants were asked to 

input the gestures as fast as possible, but to focus more on the accuracy. That is, they were encouraged to 

reduce the misrecognition errors, any way they saw fit, even if it compromised their input speed. They were 

informed that they could use the alternative method (Unistrokes) to input a frequently misrecognized letter, 

if they felt that this would improve (or is improving) recognition accuracy. But they were neither forced 

nor instructed to use the alternatives. Users had to keep inputting a gesture until it was correctly recognized 

by the system. On correction attempts, no synthetic recognition errors were injected to reduce the potential 

for overly frustrating tasks. Thus, users who did not want to use alternatives could use the primary method 

on correction attempts. Auditory and visual feedback was provided, as described in Section 5.1.3. To 

minimize interruptions, participants were permitted to take at most two three-minute breaks during the 

study, as necessary. Given that participants entered 630 letters in the whole session, this gave them enough 

time to create a good mental model of the system and its errors. After all, each participant the set of faulty 

letters was constant for each participant. Upon completion of the study, they were asked to fill out a short 

questionnaire, where they were asked to list the frequently misrecognized letters. 
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Note that the focus of the study was to investigate whether users adapt to the injected misrecognition errors 

by bypassing them through usage of the alternative input method. Thus, attempts were made to ensure that 

the memorization of the primary method was not absolutely necessary. Towards this, the primary gesture 

set was displayed at all times. See Figure 38 for a screenshot. Also, participants practiced only the primary 

method before the study. In contrast, to discover the alternative gesture for a letter during the study, users 

had to tap or right-click on its corresponding primary gesture in a panel. This displayed the alternative 

method for inputting that letter for two seconds, and then returned to the original state, see Figure 38. 

The user study used a within-subjects design, where the within-subjects factor focused on 0, 10, 20, and 

30% injected misrecognition error rates. Twelve participants inputted the seven letters (see Figure 37), 

ninety times each, using the primary method (Graffiti). However, they were permitted to use the alternative 

method (Unistrokes) to input the frequently misrecognized letters in an attempt to improve recognition 

accuracy. Each participant inputted in total 630 letters. The dependent variables (and the metrics) were 

GPC, AMU (%), and 𝑻𝑻  (ms). Section 5.1.7 defined these metrics. 

5.2.4 Results 

The whole study lasted from sixty to ninety minutes including the demonstration, practice, and breaks. 

Upon completion of the study, 59% participants were able to recognize all three error prone letters, 33% had 

recognized the two most error prone letters, while the remaining 8% recognized only the most error prone one. 

D’Agostino Kurtosis tests on the dependent variables revealed that the data were normally distributed. 

Also, a Mauchly’s test confirmed that the data’s covariance matrix was circular in form. Thus, repeated-

measures ANOVA was used for all analysis. The statistical tests used a significance level (α) threshold of 

5%. That is, the null hypothesis was rejected when a probability value was below 5%. All statistically 

significant results are presented with effect size (η2) and power (1–β). See Appendix A1 and A4 for more 

information on η2 and 1–β, respectively. 

To identify learning, the study data was segmented into blocks of ten appearances of each letter during the 

study. That is, the average of every ten times a letter was presented to the users to input was used to 

observe improvements over time. As all letters appeared exactly ninety times per participant, there were 

nine segments for each letter. 
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5.2.4.1 Alternative Method Usage (AMU) 

An ANOVA on the data revealed that there was a significant effect of injected misrecognition error rate on 

AMU (F3,11 = 5.56, p < .005; ɳ2 = .40, 1–β = 0.97). Average AMU for 0, 10, 20, and 30% injected 

misrecognition error rates were 8.5, 31.85, 27.59, and 55.19%, correspondingly. Figure 41 illustrates this. 

A Tukey-Kramer test showed that the 30% injected misrecognition error rate was significantly higher 

AMU than 0, 10, and 20%. 

 
Figure 41. Average Alternative Method Usage (AMU) over all investigated injected misrecognition error rates. 

Error bars represent ±1 standard deviation (SD). 

For all injected misrecognition error rates, power functions were fitted to the data to model the power law 

of practice (Card et al., 1983). This is illustrated in Figure 42, where the horizontal axis represents the 

segments (see Section 5.2.4) and the vertical axis represents the average AMU during that segment. Recall 

that there were four letters where no misrecognition errors were injected (0%), compared to one letter for 

each injected misrecognition error rates (10, 20, and 30%). Therefore, for better representation, the 0% data 

points average the AMU of the ten appearances of the four non-faulty letters (10×4 appearances). An 

attempt to fit linear functions to the data was also made (0%: R2 = 0.87334, 10%: R2 = 0.63659, 20%: R2 = 

0.95331, and 30%: R2 = 0.51826), but they did not correlate as well as power functions (0%: R2 = 0.92358, 

10%: R2 = 0.84447, 20%: R2 = 0.96004, and 30%: R2 = 0.73612). 
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Figure 42. Average Alternative Method Usage (AMU) by injected misrecognition error rates and segments. 

 
Figure 43. Average Input Time (𝑻𝑻𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒉𝒉 ) over all investigated injected misrecognition error rates.  

Error bars represent ±1 standard deviation (SD). 

5.2.4.2 Input Time (𝑻𝑻𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒉𝒉 ) 

There was global learning, as the average time over all letters to input a gesture, 𝑻𝑻 , correlated well 

with the power law of learning (Card et al., 1983), over all letters (y = 750.07x-0.109, R² = 0.7564). An 

ANOVA on the data failed to identify a significant effect of injected misrecognition error rate on 𝑻𝑻  

(F3,11 = 1.68, p > .05). 𝑻𝑻  for 0, 10, 20, and 30% injected misrecognition error rates was 652, 627, 707, 

and 593 milliseconds, respectively. Figure 43 illustrates this. 
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Figure 44. Average Gestures per Character (GPC) over all investigated injected misrecognition error rates. 

Error bars represent ±1 standard deviation (SD). 

5.2.4.3 Gestures per Character (GPC) 

An ANOVA identified a significant effect of injected misrecognition error rate on GPC (F3,11 = 4.39, 

p < .05; ɳ2 = .20, 1–β = 0.81). A Tukey-Kramer test revealed that 30 and 20% injected misrecognition error 

rates yielded significantly higher GPCs compared to 0 and 10%. Average GPC for 0, 10, 20, and 30% 

injected misrecognition error rates were 1.11, 1.25, 1.4, and 1.37, respectively, as illustrated in Figure 44. 

However, the data over all letters did not correlate well with the power law of learning (Card et al., 1983), 

(y = 1.2638x0.0092, R² = 0.1001). 

5.2.5 Discussion 

The results of the study support acceptance of the hypothesis H1 C5 (see Section 5.2). The results show that 

the use of the alternative method increased over time. Figure 42 illustrated average AMU by injected 

misrecognition error rates and segments, where one can see that participants learned to use the alternative 

method to input those letters where synthetic misrecognition errors were injected relatively faster compared 

to the reliable letters. A Tukey-Kramer test showed that the alternative method was used substantially more 

frequently for the most faulty letter (30% injected misrecognition error rate) compared to the less faulty 

ones (0-20% injected misrecognition error rates). This verifies the hypothesis that users adapt to a gesture-

based technique’s misrecognition errors and that this adaptation rate depends on how frequently they occur. 

That is, users adapt to an error faster if it occurs more frequently. 

There was no significant effect of injected misrecognition error rate on 𝑻𝑻 . Instead, participants learned 

to input all letters faster with time, despite the injected misrecognition error rates. This verifies the 
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assumption discussed in Section 5.1.2.2 that switching input methods mid-study would not affect entry 

speed in a significant manner. This also validates the decision of using Graffiti and Unistrokes as the 

primary and the alternative methods, respectively. 

One interesting trend visible in Figure 42 is that users adapt to the 10 and 20% injected misrecognition 

error rates roughly the same way, while adaptation to 0 and 30% is quite distinct. One could speculate that 

this is because users perceive 10 and 20% injected misrecognition error rates almost the same way, while 

30% was perceived as too error prone. User feedback data also supports this, as most users responded that 

they were only able to differentiate between the 10 and 20% injected misrecognition error rates towards the 

end of the study. This behavior is similar to the results on text entry on a faulty keyboard, presented in 

Chapter 4, where 10 and 20% were also not found to be significantly different. 

There was a significant effect of injected misrecognition error rate on GPC. Evidently, 30 and 20% injected 

misrecognition error rates yielded significantly higher GPCs compared to 0 and 10%. This is not 

unexpected as error correction was forced during the study. Therefore, participants often had to make 

multiple attempts to input the letters where synthetic misrecognition errors were injected. This is also 

apparent in Figure 44, where one can see the increase in average GPC with increasing injected 

misrecognition error rates. 

To further observe user adaptation to injected misrecognition error rates and to investigate whether the 

results of this study apply to relatively lower rates or not, a second user study was conducted. 

 User Study 2 5.3

This study investigated users’ adaptation behavior for injected misrecognition error rates from 0 to 10%. It 

also tested hypothesis H1 C5, as the previous user study, see Section 5.2. 

5.3.1 Participants 

Twelve participants, aged from 18 to 34 years, average 24, took part in the study. Appendix A3 elaborates 

on the procedure used to determine the sample size; i.e., the number of participants. They were recruited 

through online communities, local university e-mailing lists, posting flyers on campus, and by word of 

mouth (convenience sampling). None of them had prior experience with pen-based devices and eleven of 

them had no knowledge of Unistrokes and Graffiti. One knew about these techniques, but had never used 
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them. Six of them were female and one was a left-hand pen user. They all received a small compensation 

(CAD 10.00) for their participation. 

5.3.2 Apparatus, Procedure, and Design 

The same apparatus as the first user study, described in Section 5.2.2, were used in this study. It also used 

the same procedure and design, described in Section 5.2.3. The difference is that this study investigated 

lower injected misrecognition error rates; i.e., 0, 5, 7.5, and 10%. 

5.3.3 Results 

The whole study lasted from fifty to ninety minutes including the demonstration, practice, and breaks. 

Upon completion of the study, 25% participants were able to recognize all three error prone letters, 58% 

recognized the two most error prone letters, and the remaining 17% recognized only the most error prone one. 

D’Agostino Kurtosis tests on the dependent variables revealed that the data were normally distributed. 

Also, a Mauchly’s test confirmed that the data’s covariance matrix was circular in form. Thus, repeated-

measures ANOVA was used for all analysis. The statistical tests used a significance level (α) threshold of 

5%. That is, the null hypothesis was rejected when a probability value was below 5%. All statistically 

significant results are presented with effect size (η2) and power (1–β). See Appendix A1 and A4 for more 

information on η2 and 1–β, respectively. 

Similar to the first study and to observe learning, the data was segmented into blocks of ten appearances of 

each letter in the study. That is, every ten times a given letter was presented to the users to input was treated 

as a single data point. As all letters appeared exactly ninety times per participant, there were nine segments 

for each letter. 

5.3.3.1 Alternative Method Usage (AMU) 

An ANOVA revealed that there was a significant effect of injected misrecognition error rate on AMU 

(F3,11 = 3.52, p < .05; ɳ2 = .20, 1–β = 0.82). Average AMU for 0, 5, 7.5 and 10% injected misrecognition 

error rates were 1.09, 6.48, 5.74, and 22.69%, respectively. Figure 45 illustrates this. A Tukey-Kramer test 

failed to identify groupings. However, a statistically weaker Duncan’s test identified two groups, 0-7.5% 

and 10%. 
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Figure 45. Average Alternative Method Usage (AMU) over all investigated injected misrecognition error rates. 

Error bars represent ±1 standard deviation (SD). 

For all injected misrecognition error rates, the data was again fit with power functions to analyze learning 

(Card et al., 1983). Figure 42 illustrates this, where the horizontal axis represents the segments and vertical 

axis represents the average AMU during that segment. As discussed in Section 5.2.4, the 0% condition is 

averaged across the four non-faulty letters. Again, an attempt was made to fit linear functions to the data 

(0%: R2 = 0.24341, 5%: R2 = 0.2467, 7.5%: R2 = 0.13909, and 10%: R2 = 0.83695), yet the power functions 

yielded marginally better results (0%: R2 = 0.3672, 5%: R2 = 0.20167, 7.5%: R2 = 0.00681, and 10%: R2 = 

0.84642). 

 
Figure 46. Average Alternative Method Usage (AMU) by injected misrecognition error rates and segments. 
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5.3.3.2 Input Time (𝑻𝑻𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒉𝒉 ) 

An ANOVA on the data did not identify a significant effect of injected misrecognition error rate on 𝑻𝑻  

(F3,11 = 1.34, p > .05). Average 𝑻𝑻  values for 0, 5, 7.5, and 10% injected misrecognition error rates 

were 1216, 1147, 1181, and 999 milliseconds, correspondingly. Figure 47 illustrates this. Similar to the first 

user study, the data over all letters correlates very well to the power law of learning (Card et al., 1983), (y = 

1534.9x-0.22, R² = 0.9574). 

 
Figure 47. Average Input Time (𝑻𝑻𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒉𝒉 ) over all investigated injected misrecognition error rates.  

Error bars represent ±1 standard deviation (SD). 

5.3.3.3 Gestures per Character (GPC) 

An ANOVA identified a significant effect of injected misrecognition error rate on GPC (F3,11 = 5.33, 

p < .01; ɳ2 = .20, 1–β = 0.59). A Tukey-Kramer test revealed that the 10% injected misrecognition error 

rate yielded a significantly higher GPC than the 0% injected misrecognition error rate. Average GPC for 0, 

5, 7.5, and 10% injected misrecognition error rates were 1.07, 1.16, 1.21, and 1.31, correspondingly, as 

illustrated in Figure 48. Similar to the previous study, no strong learning effect was visible as the data 

correlated only weakly with the power law of learning (Card et al., 1983), (y = 1.2619x-0.044, R² = 0.6529). 
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Figure 48. Average Gestures per Character (GPC) over all investigated injected misrecognition error rates. 

Error bars represent ±1 standard deviation (SD). 

5.3.4 Discussion 

The results of the study support acceptance of the hypothesis H1 C5 (see Section 5.2). In fact, the results are 

mostly comparable to the results of the first study: there was a significant effect of injected misrecognition 

error rate on both AMU and GPC, but not on the input time (𝑻𝑻 ). Besides, substantial learning effects 

were observed for AMU and input time (𝑻𝑻 ), but not for GPC. Figure 46 illustrates average AMU by 

injected misrecognition error rates and segments. Similar to the first study, one can see there that 

participants learned to use the alternative method to input the letters where synthetic misrecognition errors 

were injected more frequently relatively faster than the other letters. Also, the 10% injected misrecognition 

condition, common to both studies, yielded somewhat comparable AMU (32% and 23%) and GPC (1.25 

and 1.31) values, which shows that the results of the two experiments are reasonably consistent. Figure 42 

and 46 illustrate that users adapted to the 10% misrecognition condition nearly the same way. Therefore, 

results of this study further validate the initial hypothesis, and extend the findings of the first study towards 

lower (injected) misrecognition error rates. 

Figure 46 shows that adaptation to 0, 5, and 7.5% injected misrecognition error rates were relatively slower 

than 10%. This is most likely due to insufficient exposure. In the post-study questionnaire, most 

participants (75%) responded that they managed to identify the 5 and 7.5% faulty letters only shortly before 

the study ended. This is also apparent in Figure 46, where one can see a distinct trend in adaptation through 

an increased alternative method usage for these letters during the last three segments. An ANOVA on the 

data from these segments identified a significant effect of injected misrecognition error rate on AMU 

(F3,11 = 3.96, p < .05; ɳ2 = .20, 1–β = 0.82). A Tukey-Kramer test identified two statistically different 

groups for the last three segments: 0% and 5-10%, while a statistically weaker Duncan’s test identified 

three statistically different groups for the last three segments: 0%, 5-7.5% and 10%. Note that the average 
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input time (𝑻𝑻 ) was higher during the second study, compared to the first. This is presumably due to the 

inclusion of relatively more inexperienced users during the second study. 

 Overall Discussion and Implications 5.4

Overall, the studies showed that users learn to use alternative gestures more quickly, if the primary gestures 

are faultier. This validates hypothesis H1 C5. The results of this work complements findings in psychology 

(Craik and Lockhart, 1972; 1975), skill acquisition (Schmidt and Bjork, 1992), and user interface research 

(Cockburn et al., 2007; Ehret, 2002; Riche et al., 2010) that imply that graphical user interfaces requiring 

greater efforts from users may facilitate the transition to recall-based expert behavior (also discussed in 

Section 2.6.6). After all, faulty gestures increase user effort to some degree. The results also indicate that 

gesture recognizers need to achieve substantially more than 90% accuracy in practice to appear less (or 

maybe even in-)distinguishable from a “perfect” system. This is similar to results reported in Chapter 4 for 

keyboard based text entry. 

The fact that users adapt to unreliable gesture recognizers by using an alternative method for inputting the 

letters that are frequently misrecognized by the system should encourage developers to provide users with 

alternative gesture set(s) along with the primary one. They should also permit users to swap a primary 

gesture with an alternative one, and vice versa, as necessary. A more advanced technique can keep track of 

the primary and the alternative method usage for all letters and might then even automatically switch the 

primary gestures with the alternative ones for letters that are frequently inputted with the alternative 

method. This may increase the overall recognition accuracy, providing that the recognition rate is higher for 

the alternative method than the primary one. This can be achieved by using more distinct gestures as 

alternatives, since results showed that users adapt to the alternative gestures for frequently misrecognized 

letters, even when the alternative gestures are relatively less intuitive (and harder to discover) than the 

primary gestures. One may speculate such a feature can be applied not only for text entry but also for other 

gesture-based techniques, such as natural user interfaces and application launchers. 

Indirectly, these results also indicate that gesture recognizers need to achieve substantially more than 90% 

accuracy to be not easily distinguishable from a “perfect” system. This is similar to other results for 

keyboard based text entry presented in Chapter 4. Besides, looking across both studies, one interesting 

observation is that about half of the users were unable to identify all faulty gestures in the system within 

about an hour. One could speculate that this is likely due to different cognitive strategies or personality types. 

Investigating this is a topic for future work. 
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 Limitations 5.5

The ANOVAs on the data from User Study 1 identified a significant effect of injected misrecognition error 

rate on Gestures per Character (GPC) and Alternative Method Usage (AMU). A post-hoc analysis detected 

a large effect size for both of these dependent variables (see Appendix A1). Further post-hoc analysis 

revealed that the statistical power exceeded the 0.80 threshold (see Appendix A4) at the observed large 

effect size level for both GPC and AMU. This indicates that there was adequate statistical power for these 

dependent variables. 

Table 6. Detected effect size and measured statistical power. 

User Study Dependent Variable Effect Size (η2) Power (1–β) 

Study 1 GPC Large > 0.80 
AMU Large > 0.80 

Study 2 GPC Large < 0.80 (= .59) 
AMU Large > 0.80 

Similarly, an ANOVA on the User Study 2 data identified a significant effect of injected misrecognition 

error rate on Gestures per Character (GPC) and Alternative Method Usage (AMU). A post-hoc analysis 

detected a large effect size for both GPC and AMU (see Appendix A1). Further post-hoc analysis revealed 

that the statistical power exceeded the 0.80 threshold (see Appendix A4) for AMU, but not for GPC (see 

Table 6). This implies that a larger sample size (N) may necessary to show sufficient statistical power. 

Appendix A4 elaborates on the criteria used for calculating statistical power. 

As the study recruited participants by using convenience sampling from the university community, the 

results may not generalize to a larger population. Nevertheless, an attempt was made to counteract this 

potential confound by recruiting not only university students but also instructors and staff. 

 Summary 5.6

This chapter presented the results of two user studies that verified that users gradually adapt to misrecognition 

errors and that this adaptation rate depends on how frequently such errors occur. That is, users adapt to an 

error faster if it occurs more frequently. It also speculated on the practical implications of this work. 

The next chapter investigates whether the use of pseudo-pressure in predictive text entry can improve the 

overall text entry performance by increasing entry speed and reducing errors. 
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Chapter 6  

A New Text Entry Technique 

Although much work has targeted pressure-based user interfaces and widgets for tabletops and large 

displays, few attempts focus on mobile devices. The main reason for this is technological. No current 

mobile device provides hardware support for measuring pressure. However, recent work (Graham-Rowe, 

2010; Nurmi, 2009) indicates that future mobile phones may include pressure-sensitive touchscreens as an 

alternative interaction modality. A recent opaque touchpad, called Synaptics ForcePad14, already provided 

support for detecting pressure levels. 

Several software solutions are available to detect pressure on touchscreens. Yet none of these are broadly 

applicable, as they either increase the time to perform tasks that involve additional pressure, or are user 

specific; e.g., due to different finger sizes and types of touch, also discussed in Section 2.2.9. This chapter 

presents a new hybrid pseudo-pressure detection technique that combines the existing touch-point- and 

time-based approaches to detect pressure. The new technique is evaluated in a user study for two different 

pressure levels. An investigation if users interpret fairly general terms such are regular and extra pressure 

in a reasonably consistent manner and how much force is really applied for each level was carried out in a 

separate user study. 

As discussed in Section 2.2.4.3, almost all recent virtual keyboards augment text entry with prefix-based 

word prediction and auto-correction. These methods suggest the most probable word(s) based on what 

users are typing and automatically correct likely misspelled words. Almost all these methods require users 

to tap on an area outside the virtual keyboard to reject or bypass a suggestion. This requires additional 

mental preparation, visual scan time, as well as a finger movement to the target. Due to the small target 

sizes used, users may need several attempts to reject a prediction. This increases the possibility of 

accidentally selecting the wrong word as well. This chapter also presents a new pressure-based technique 

for prediction rejection that does not require tapping outside the keyboard. Instead, it requires users to 

apply more pressure for the tap on the next key. The performance of this technique was compared with the 

                                                             

14 http://www.synaptics.com/solutions/products/forcepad 
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conventional technique in an empirical study. User experience data on the new hybrid pressure detection 

simulation and the pressure-based predictive text entry technique have also been provided. 

 Hybrid Pressure Detection Simulation 6.1

None of the existing software solutions to detect pressure on touchscreens are broadly applicable. These 

techniques either increase the time to perform tasks that involve additional pressure or are user specific due 

to different finger sizes and types of touch. Please refer to Section 2.2.9.2 for a review on the existing 

techniques and their limitations. To counteract these issues, a new hybrid method is developed here, which 

combines a time- and a touch-point-based approach. The new method uses the average time it takes to 

perform a task and the average touch-point movement for that specific task as baselines. Then, it simulates 

extra pressure when users take more time and/or their touch-point moves a greater distance than the 

baselines while performing that task. Theoretically, the new hybrid technique will simulate pressure detection 

faster and more reliably. In particular and if the touch-point threshold is crossed before the time threshold, 

users will not have to wait to trigger extra pressure detection. In contrast, the naïve time-based approach 

always requires additional time to perform a task. Therefore, the new hybrid technique will not only save time 

but also increase the probability of detecting extra pressure (assuming that one approach will detect pressure 

when the other fails). 

As discussed in Section 2.2.9.2, the touch-point moves further when additional pressure is applied. This 

movement is somewhat proportional to the force applied on the screen. The touch-point-based approach 

simulates pressure detection based on this movement. This approach is somewhat similar to the contact-

area-based one. The main difference is that the touch-point-based approach does not use contact area but 

considers only the touch center coordinates (x- and y-axis). This makes it simpler, more straightforward, 

and theoretically even applicable to styli-based interactions (Ramos et al., 2004). As most current mobile 

touchscreens do not provide contact area information, many contact-area-based implementations derive 

contact areas from the touch coordinates with various heuristics (Boring et al., 2012). These heuristics are 

not necessarily 100% reliable. As the touch-point-based approach works directly on the touch point 

movement, which is less prone to misinterpretation, it is reasonable to consider it more reliable. 

 User Study 1 6.2

A user study was conducted to validate the assumption that the hybrid technique can detect pressure more 

efficiently. Two pressure levels were examined: regular and extra. Participants were instructed that regular 
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pressure represented the level of pressure typically applied on touchscreens, while extra pressure 

represented relatively stronger pressure. Only two levels were investigated, as the main target of this is 

work is to use pseudo-pressure in text entry, and prior research showed that more than two pressure levels 

do not work well in text entry tasks (McCallum et al., 2009; Wang et al., 2009), see also Section 2.2.9.1. 

Thus, the study tested the following hypothesis: 

(H1 C6.1) On average, tap times and touch point movements are significantly different for the two different 

pressure levels: regular and extra. 

6.2.1 Participants 

Twelve participants, aged from 21 to 29 years, average 24, participated in the user study. Appendix A3 

elaborates on the procedure used to decide the number of participants (sample size). They were recruited 

through online social communities, local university e-mailing lists, by posting flyers on campus, and by word 

of mouth (convenience sampling). However, only experienced touchscreen users were recruited to ensure 

familiarity with touchscreens. Five of the participants were female and all were right-handed. They were all 

familiar with the virtual Qwerty layout. They all received a small compensation (CAD 5.00) for participating. 

6.2.2 Apparatus 

A custom application, developed with the iPhone SDK, was used with an Apple iPhone 4, 115.2×58.6×9.3 

mm, 137 grams, at 640×960 resolution for the user study. The application’s virtual Qwerty keyboard was 

visually identical to the iPhone’s default keyboard. See Figure 49. However, the Shift and “?.123” keys 

were disabled, as these were not required during the study. The custom keyboard featured the key 

enlargement feedback of the iPhone’s default keyboard. No auditory feedback was provided. The 

application calculated all metrics directly and logged all action events with timestamps. 

6.2.3 Procedure 

During the study, participants inputted all the letters of the English language, plus the Space character, 

using both regular and extra pressure. The application presented one character at a time in random order 

and in random cases to avoid ordering effects. Participants were asked to input the lowercase characters by 

applying regular pressure and the uppercase characters by applying extra pressure. Regular pressure was 

described to them as the level of pressure they usually apply on their touchscreen-based devices, while 
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extra pressure was described as relatively stronger pressure than that. The uppercase and lowercase space 

characters were represented by “sp” and “SP”, respectively. 

 
Figure 49. The custom application used during User Study 1. In the first screenshot, users had to tap on the “D” 

key with regular pressure. In the second screenshot, they had to tap on the “I” key with extra pressure. 

Participants were instructed to first examine the presented character, understand the level of pressure they 

need to apply, and then to perform the specified task. They were not provided with practice trials. The 

application did not permit participants to correct their mistakes, as the focus was on the differences between 

regular and extra pressure in terms of tap time and touch point movement, and not on input accuracy. Upon 

completion of inputting a character, the next one was automatically presented on the screen. Participants 

were instructed to hold the device with their dominant hand in portrait orientation, and then to input using 

the thumb of that hand. The position is the most frequently used one by mobile users (Hoober, 2013). 

Participants were informed that they could take short breaks (maximum 5 minutes) between blocks. 

The system calculated the following metrics. 

1. Tap Time (millisecond): This signifies the time it took to input a character. This was calculated 

by measuring the time difference from the moment users touched the virtual keyboard until they 

lifted their fingers. 

2. Touch Point Movement (millimeter): This signifies the distance users touch point traveled while 

inputting a character. First, the following equation was used to calculate the distance in pixels. 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑   𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Equation (19) 
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Where, dx and dy are the differences between the x- and the y-coordinates of the start- and the end-points, 

respectively. Then, the data was converted to millimeters. 

6.2.4 Design 

A within-subjects design was used, where the within-subjects factor focused on the regular (lowercase 

characters) and the extra pressure (uppercase characters). The dependent variables (and the metrics) were 

tap time (ms) and touch point movement (mm). There were four blocks. In each block, participants inputted 

27 lowercase and 27 uppercase characters. These characters were presented one at a time in random order. 

In summary, the design was: 

12 participants × 

4 blocks × 

54 characters (27 regular pressure lowercase and 27 extra pressure uppercase characters, randomized) 

= 2,592 characters, in total. Each participant inputted 216 characters. 

6.2.5 Results 

Both Anderson-Darling and D’Agostino Kurtosis tests on the dependent variables revealed that the data were 

not normally distributed. Therefore, a Wilcoxon Signed-Rank test was used for all analysis. The statistical 

tests used a significance level (α) threshold of 5%. That is, the null hypothesis was rejected when a 

probability value was below 5%. 

 
Figure 50. Average tap time (millisecond) for different pressure levels.  

Error bars represent ±1 standard deviation (SD). 
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6.2.5.1 Tap Time (Millisecond) 

A Wilcoxon Signed-Rank test indicated that there is a significant difference between regular and extra 

pressure in terms of tap time (z = -30.49, p < .0005). The average tap times for regular and extra pressure were 

116.9 ms and 390.07 ms, respectively. 

6.2.5.2 Touch Point Movement (Millimeter) 

A Wilcoxon Signed-Rank test revealed a significant difference between regular and extra pressure in terms 

of touch point movement (z = -17.76, p < .0005). The average touch point movements for regular and extra 

pressure were 0.289 mm and 0.503 mm, correspondingly. Figure 51 illustrates this. 

 
Figure 51. Average touch point movement (millimeter) for different pressure levels.  

Error bars represent ±1 standard deviation (SD). 

6.2.6 Discussion 

The results of the study support acceptance of the hypothesis H1 C6.1 (see Section 6.2). The results establish 

that there is a significant difference between regular and extra pressure both in terms of tap time and touch 

point movement. On average, taps took more time and the touch point moved more when extra pressure 

was applied. This is a strong indication that a hybrid criterion can be useful to simulate pressure detection, 

at least for two pressure levels. Further study identified three distinct user groups. About 67% of users took 

significantly more time to tap. But their touch point did not move significantly. The touch point of 8% of 

all users moved significantly more. Yet these did not take significantly more time. The remaining 25% took 

both significantly more time and their touch point moved more with extra pressure. This indicates that an 

approach based on either time, contact-area, or touch-point alone cannot accommodate all users, as user 

behavior varies too much. In contrast, the hybrid approach supports all three groups. 
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The data was further analyzed to investigate the effect of key positions on tap time and touch point 

movements by segmenting the virtual keyboard into 3×1 and 2×2 grids, similar to Parhi et al. (2006). As no 

statistical significance was identified, this was not pursued further. 

 User Study 2 6.3

The results of the first study verified that the two different pressure levels are easily distinguishable through 

a combination of tap time and touch point movement. Also, different users seem to interpret regular and 

extra pressure in a reasonably consistent way. While some have investigated the amount of force applied on 

flat surfaces (Srinivasan and Chen, 1993; Mizobuchi et al., 2005; Ramos et al., 2004), their results do not 

apply directly in this work because they either explored more than two pressure levels or used a pressure-

sensitive stylus. Thus, an additional study was conducted to detect the force users apply when limited to 

two pressure levels. The study tested the following hypothesis: 

(H1 C6.2) The amounts of force applied on a flat surface are substantially different for the two different 

pressure levels: regular and extra. 

6.3.1 Participants 

Fourteen participants, aged from 23 to 46 years, average 31.4 years, participated in the study. Appendix A3 

elaborates on the procedure used to decide the number of participants (sample size). They were recruited 

through online social communities, local university e-mailing lists, and by word of mouth (convenience 

sampling). Four of them were female and all of them were right-handed. They all owned and frequently 

used a touchscreen-based mobile device. 

6.3.2 Apparatus 

A DYMO M5 Digital Postal Scale was used for this study. The scale had 5 lb weight capacity. It displayed 

the weight of an object in 0.1 oz increments with ±0.1 oz accuracy. 

6.3.3 Procedure 

The study used a finger posture akin to holding a touchscreen device with one hand and then tapping on it 

with the thumb of the same hand. For this, the digital scale was placed on the table and participants were 
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asked to sit in front of it. They were then instructed to place the closed fist of their dominant hand on the 

table, and to tap on the scale with only the thumb of that hand, as if tapping on a virtual keyboard. See 

Figure 52. This design eliminates the option of using arm strength to apply pressure and limits users to 

using only their thumb. There were two conditions: regular and extra pressure. In the regular pressure 

condition, participants were asked to tap on the scale six times with regular pressure. For the extra pressure 

condition, they were asked to do the same with extra pressure. Conditions were counterbalanced to avoid 

asymmetric skill transfer. Similar to the first study and during the regular pressure condition, participants 

were instructed to tap on the scale with the amount of pressure they usually apply on a virtual keyboard. In 

the extra pressure condition, they were asked to apply relatively more pressure than that. The experimenter 

recorded the readings in ounces (oz) with pen and paper, which were later converted to newton (N). 

Participants could not see the scale readings, since this might influence their performance. 

 
Figure 52. A participant tapping on the digital scale. 

6.3.4 Design 

A within-subjects design was used for the two factors: regular and extra pressure. The dependent variable 

(and the metric) was the force applied (N) on the surface. In summary, the design was: 

14 participants × 

2 conditions (regular and extra pressure, counterbalanced) × 

6 taps on the scale 

= 168 taps, in total. Each participant tapped 12 times. 

6.3.5 Results 

Both Anderson-Darling and D’Agostino Kurtosis tests on the dependent variables revealed that the data were 

not normally distributed. Therefore, Wilcoxon Signed-Rank test was used for all analysis. The statistical tests 
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used a significance level (α) threshold of 5%. That is, the null hypothesis was rejected when a probability 

value was below 5%. 

6.3.5.1 Applied Force (Newton) 

A Wilcoxon Signed-Rank test indicated that there is a significant difference between regular and extra 

pressure in terms of applied force (z = -2.86, p < .004). The average force applied for regular and extra 

pressure was 1.04 N and 3.24 N, respectively. 

 
Figure 53. Average force (N) applied for regular different pressure levels.  

Error bars represent ±1 standard deviation (SD). 

6.3.6 Discussion 

The results of the study support acceptance of the hypothesis H1 C6.2 (see Section 6.3). The results show that 

the forces applied during the regular and extra pressure conditions were significantly different. Users 

applied on average 1.04 N for regular and 3.24 N for extra pressure. This matches Mizobuchi et al.’s (2005) 

work, where they identified force levels between 0 and 3 N to be comfortable and 4 N to be (too) strong. 

Similarly, this study found a force level well below 3 N for regular and about 3 N for extra pressure. 

Nevertheless, this result is only an approximation because the data were collected on a postal scale instead 

of a pressure sensitive touchscreen. 

 Pressure-Based Predictive Text Entry 6.4

The results of the first two studies established that users comprehend regular and extra pressure in a 

reasonably consistent manner. Also, the first study confirmed that a hybrid of time- and touch-point-based 
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approaches could detect pressure reliably on touchscreens. Here these findings are applied to text entry by 

developing and evaluating a new pressure-based predictive text entry technique. 

6.4.1 The New Technique 

Cancelling a prediction requires the user to tap on an area outside of the virtual keyboard, a relatively 

distant target. The time to do this depends not only on mental preparation and visual scan times, but also on 

the distance and width of the target (the Fitts’ law parameters). Furthermore, the small target size increases 

the potential for errors. For example, while attempting to tap on a prediction bubble to reject a prediction, 

one may miss the target. Tapping then on the Space key without visual verification will result in input of an 

entirely wrong word. These and additional issues with predictive text entry have also been discussed in 

Section 2.2.4.3. To address these discussed shortcomings, this section presents a new pressure-based 

predictive technique that does not require tapping outside the keyboard. 

The new technique resembles and behaves like the default iPhone keyboard. However, one can apply extra 

pressure on the next target key (which may be any key) to bypass prediction. Figure 54 (c) illustrates word 

prediction in the new technique, where the system predicted the most probable word based on the inputted 

prefix. Now, one can perform any of the above-mentioned tasks: accept, reject, or ignore the prediction. To 

reject the prediction, one only has to tap on the next key with extra pressure. For example, to input 

“educo”, one taps on the “O” key with extra pressure. As the new technique reduces the average finger 

movement distance, it can be hypothesized that this will not only improve text entry speed but also reduce 

errors. The default iPhone keyboard was used as a baseline as most users use this or a similar keyboard on 

their devices (Arif, 2012). Also, the intent of this work is not to evaluate the quality of the predictive system, 

but to evaluate pressure as a modality in predictive text entry, which is mostly independent. 

 
Figure 54. Default word prediction systems on the (a) Apple iPhone, (b) Android OS, and (c) the new technique. 
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6.4.1.1 Word Prediction 

A straightforward word prediction system was created for the study. For this, a list of the most frequent 

5000 English words was used (Davies, 2011), extracted from the 450 million-word Corpus of Contemporary 

American English (COCA). Each time users input a character the system attempts to find matches in the 

list and suggests the most frequent word in a prediction bubble. See Figure 54 (c). Based on several pilots, 

the following conditions were applied in the prediction system. 

1. At least two characters have to be inputted for the system to suggest a word. For example, users 

have to input at least “ed” to get the prediction “education”. 

2. If no match was found, the system will assume that the user made a spelling mistake and will 

suggest the most frequent word with a Levenshtein string distance (Levenshtein, 1966) less than 

three to the inputted prefix. For example, with “edution” as input, the system will suggest 

“education”, with an edit distance of two. 

3. After the user rejects a prediction and similar to many other predictive systems, the system 

resumes suggestions on a Space, Return, or Backspace. 

The prediction system was informally tested without pressure detection with three experienced Apple iPhone 

users. They all inputted random texts for ten minutes. None of them noticed any notable difference between 

the tested and the default iPhone prediction system, in terms of prediction accuracy or processing time. 

6.4.1.2 Pressure Detection 

Pressure detection was simulated based on the proposed hybrid approach. A threshold of 200 ms was used 

for the tap time, and a threshold of 0.389 mm for touch point movement. Extra pressure was detected when 

users took more time and/or their fingers slid more than the above-mentioned thresholds. These values 

were picked based on the results of the first user study, by selecting the “deepest” spot between the two 

alternatives as thresholds. 

 User Study 3 6.5

This user study compared the new pressure-based predictive text entry technique with the conventional 

technique (the default iPhone method). It also explored user preference for pressure as an alternative modality 

and (indirectly) evaluated the hybrid pressure detection approach. It tested the following hypothesis: 
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(H1 C6.3) The new technique improves mobile touchscreen predictive text entry performance in terms of 

speed, accuracy, and user comfort, compared to the conventional technique. 

6.5.1 Apparatus 

The same physical apparatus as in the first user study was used. The custom application was modified to 

support predictive text entry, as discussed previously. Again, the Shift and the “?.123” keys were disabled, 

as users were not required to use these during the user study. 

 
Figure 55. The custom application during User Study 3. Note the change in the prediction in the two screenshots. 

6.5.2 Participants 

Twelve new participants, aged from 22 to 32 years, average 28 years, participated in the study. They were 

recruited through online social communities, local university e-mailing lists, and by word of mouth, by 

using convenience sampling. The user study targeted only experienced touchscreen users and fluent English 

speakers to minimize learning effects. Towards this, only native speakers or people who had spent at least 

five years in an English speaking environment were recruited. All were also frequent mobile phone users 

and had prior experience with touchscreens (on average 2 years). Two of them were female and one was left-

handed. They all used a virtual Qwerty keyboard on their mobile device to input text. Amongst them, six used 

both word prediction and auto-correction, one used only word prediction, two used only auto-correction, and 

the rest used none of the features. They all received a small compensation (CAD 10.00) for participating. 



 

 

119 

6.5.3 Procedure 

The study compared two virtual keyboards, both of which use prefix-based word prediction: the pressure-

based one with the new pressure-based prediction rejection technique, and the conventional one. During the 

study participants inputted short English phrases with both techniques. Phrases were taken from a widely 

used corpus (MacKenzie and Soukoreff, 2003) that correlates very well with the English language character 

frequency. See Appendix A2 for more information on the phrase set. Sixty random phrases without 

uppercase, numeric, or special characters were selected for each technique, which users inputted in the 

same order during the two conditions. For each condition, the same phrases were used to ensure relatively 

similar prediction rate and accuracy for all users. To reject a prediction with the pressure-based technique 

participants had to apply extra pressure on the next target key, while with the conventional technique they 

had to tap on the prediction bubble. The conditions were counterbalanced to avoid asymmetric skill transfer. 

 
Figure 56. The experiment setup for the final user study. Here, a user is inputting short English phrases in a 

seated position with the custom software. 

Users were instructed to hold the device in the portrait orientation with their dominant hand and then to 

type using the thumb of that hand. See Figure 56. The system displayed one phrase at a time and users had 

to transcribe that phrase. They were asked to take the time to read and understand the phrases in advance, 

then to enter them as fast and accurate as possible, and to press the Return key when they were finished to 

see the next one. No practice was given, but both methods were briefly demonstrated before the study. 

During this and for the pressure-based technique, special emphasis was placed on how extra pressure could 

be applied on any key to bypass predictions, including Space and Backspace. This was deemed necessary 

as users had showed uncertainty on this issue during a pilot. Participants were informed that they could take 

a short break (maximum 5 minutes) between conditions. Timing started from the entry of the first character 

and ended with the last. All key actions were performed on touch-up, similar to the default Apple iPhone 

keyboard. Hence, when users touched a wrong key, they could drag their finger to the right key before 

lifting it. They were asked to work normally, that is, to correct their errors as they noticed them. However, 
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they had to exclusively use the Backspace key for editing, as direct cursor control was disabled to remove a 

potential confounding factor. 

Both keyboards used the same method for word prediction, as discussed earlier. It was verified that the 

frequency list contained all words used in the selected 120 phrases. Then, 10% of the words were 

deliberately deleted from the list for each condition. This replicates the scenario where an incorrect 

prediction is provided and the user is forced to bypass it. This is not uncommon in predictive text entry, as 

users have to input non-dictionary words, such as abbreviations, names, alphanumeric text, and slang in 

real life. Some users also input text with the wrong prediction dictionary activated on occasion. MacKenzie 

et al., (2001) also highlighted the necessity for adequate handling of non-dictionary words in evaluations of 

predictive text entry. The 10% deleted words were selected randomly, subject to the restriction that they 

consist of at least three characters and do not appear more than once in the phrases. This guaranteed that an 

incorrect prediction would not be offered more than once, to prevent user adaptation. 

The system calculated the average text entry speed (WPM), error rate (TER), corrective operation (%), and 

the sum of the mental preparation and physical movement time (milliseconds) for each task. Corrective 

operation signifies the average percentage of Backspace use with each technique, while the sum of the mental 

preparation and physical movement time was measured from the end of the previous task (touch-up) to the 

beginning of the next task (touch-down). The system also recorded user actions on a prediction, including 

the rate at which predictions were accepted, rejected, and ignored. In addition, the system kept a record of 

how extra pressure was triggered, that is, whether through extra time, additional touch-point movement, or 

through both. Finally, upon completion of the study users completed a questionnaire. 

6.5.4 Design 

A within-subjects design was used for the two factors: conventional and pressure-based techniques. The 

dependent variables (and the metrics) were text entry speed (WPM), error rate (TER), corrective operation 

(Backspace use), mental preparation and movement time (milliseconds), and the rate of accept, reject, and 

ignore user actions on predictions. In summary, the design was: 

12 participants × 

2 conditions (conventional and pressure-based technique, counterbalanced) × 

60 phrased per condition  

= 1,440 phrases in total. Each participant entered 120 phrases. 
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6.5.5 Results 

After filtering outliers beyond three standard deviations from the mean (1.11% of the data) D’Agostino 

Kurtosis tests on the dependent variables confirmed that the data were normally distributed. In addition, a 

Mauchly’s test confirmed that the data’s covariance matrix was circular in form. Thus, repeated-measures 

ANOVA was used for all analysis. The statistical tests used a significance level (α) threshold of 5%. That 

is, the null hypothesis was rejected when a probability value was below 5%. All statistically significant 

results are presented with effect size (η2) and power (1–β). See Appendix A1 and A4 for more information 

on η2 and 1–β, respectively. A Wilcoxon Signed-Rank test was used to analyze the nonparametric 

questionnaire data. 

6.5.5.1 Entry Speed (WPM) 

An ANOVA on the data identified a significant effect of technique on entry speed (F1,11 = 13.30, p < .005; 

ɳ2 = .02, 1–β = 0.04). The average entry speeds for the conventional and the pressure-based techniques 

were 16.7 and 18.23 WPM, correspondingly. Figure 57 illustrates this. 

 
Figure 57. Average entry speed (WPM) for both techniques.  

Error bars represent ±1 standard deviation (SD). 

6.5.5.2 Error Rate (Total Error Rate) 

An ANOVA on the data identified a significant effect of technique on error rate (F1,11= 11.99, p < .01; 

ɳ2 = .02, 1–β = 0.06). The average TER for the conventional and the new techniques was 9.31 and 7.02%, 

respectively. See Figure 58. 
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Figure 58. Average error rate (TER) for both techniques.  

Error bars represent ±1 standard deviation (SD). 

6.5.5.3 Corrective Operation (Backspace Use) 

An ANOVA identified a significant effect of technique on corrective operations (F1,11 = 6.81, p < .05; 

ɳ2 =.09, 1–β = 0.69). Average corrective operations for the conventional and new techniques were 8.31 and 

6.49%, respectively. Figure 59 shows this. This metric considered only Backspace, as direct cursor control 

was disabled during the study. 

 
Figure 59. Average corrective operations (%) for both techniques.  

Error bars represent ±1 standard deviation (SD). 

6.5.5.4 Mental Preparation and Movement Time (Milliseconds) 

An ANOVA did not identify a significant effect of technique on the sum of mental preparation and physical 

movement time (F1,11 = 3.65, p = .08; ɳ2 = .10, 1–β = 0.81). The averages for the conventional and new 

techniques were 848.72 ms and 721.99 ms, respectively. Figure 60 illustrates this. 
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Figure 60. Average sum of mental preparation and physical movement time for both techniques.  

Error bars represent ±1 standard deviation (SD). 

6.5.5.5 User Actions on Predictions (Accepted, Rejected, Ignored) 

There was no significant effect of technique on accepted prediction rate (F1,11 = 0.32, ns). However, there 

was a significant effect on rejected prediction rate (F1,11 = 6.48, p < .05; ɳ2 = .09, 1–β = 0.69), and also on 

ignored prediction rate (F1,11 = 5.93, p < .05; ɳ2 = .05, 1–β = 0.43). Figure 61 illustrates the average user 

actions on predictions for both techniques. 

 
Figure 61. The average user actions on predictions (accepted, rejected, or ignored) for both techniques.  

Error bars represent ±1 standard deviation (SD). 

6.5.5.6 Hybrid Pressure Detection 

The data from the pressure-based condition was further analyzed to identify the rate at which the individual 

pressure detection simulation criteria were used by the hybrid method. Results showed that 58.59% of the 

time the hybrid technique detected extra pressure with the time-based approach, 30.8% with the touch-
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point-based approach, and the remaining 10.61% with both criteria simultaneously. Figure 62 illustrates this. 

A Friedman test found these three to be significantly different from one another (χ² = 17.92, p < .0005, df = 2). 

6.5.6 User Evaluation 

Upon completion of the study participants responded to several questions on a seven-point Likert scale. A 

Wilcoxon Signed-Rank test was used to analyze the questionnaire data. The seven-point scales were later 

converted to three-point scales using linear transformation to calculate ratios (%). All ratings below four on 

the seven-point scale were mapped to one, all fours to twos, and all ratings above four to three. Some 

responses were converted to binomial data. Everything above four was rated as “accept” and below four as 

“reject” or vice versa, depending on the phrasing of the question. Ratings of four were disregarded. Such a 

mapping is common practice in statistics (Dawes, 2008). 

 
Figure 62. The average use of the extra pressure detection simulation criteria by the hybrid method.  

Error bars represent ±1 standard deviation (SD). 

6.5.6.1 Ease of Use 

A Wilcoxon Signed-Rank test revealed that the two techniques differ significantly in their perceived ease of 

use (z = -2.72, p < .05). Average user ratings for the conventional and the new techniques were 3.08 and 

5.75, respectively. See Figure 63. On average, 83% found the new technique easier to use than the 

conventional one. Also, most users (83%) responded that they felt no fatigue or discomfort while using the 

new technique. 
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Figure 63. User feedback on how easy users found inputting text with the techniques, on a seven-point Likert scale. 

6.5.7 Speed and Accuracy 

A Wilcoxon Signed-Rank test identified significance with respect to user perceived entry speed (z = -2.85, 

p < .005) and accuracy (z = -2.05, p < .05). Average user ratings for the conventional and the new 

techniques were 3.75 and 5.25 for entry speed, and 4.17 and 5.25 for accuracy. Figure 64 illustrates this. 

83% users found inputting text with the new technique faster and 58% found it more accurate compared to 

the conventional technique. 

 
Figure 64. User feedback on how fast they thought their text entry was with the two techniques on seven-point 

Likert scales. 

 
Figure 65. User feedback on how accurate they thought their text entry was with the two techniques on seven-

point Likert scales. 
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6.5.8 Pressure Detection Simulation 

Participants were also asked to rate the accuracy of the pressure detection simulation technique. Results 

showed that 75% found the new pressure detection approach (Section 6.1) accurate. See Figure 65. A Chi-

squared test on the three-point scale derived from the original seven-point Likert scale found this to be 

significant (X2
(2)=9.5, p<.01). 

 
Figure 66. User feedback on how accurate they thought the pressure detection simulation was during the 

pressure-based condition on a seven-point Likert scale. 

6.5.9 Overall Rating 

A Wilcoxon Signed-Rank test identified significance with respect to participants’ overall rating of the two 

techniques (z = -2.27, p < .05). Average ratings for the conventional and the new techniques were 3.75 and 

5.50, respectively. See Figure 67. Results showed that most users (83%) favored the new technique over 

the conventional one. 

 
Figure 67. User feedback on how much users liked the examined techniques on a seven-point Likert scale. 
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6.5.10  Discussion 

The results of the study support acceptance of the hypothesis H1 C6.3 (see Section 6.5) and show that the 

new technique improves overall text entry performance in terms of speed, accuracy, and user comfort. On 

average, entry speed increased by 9% and error rate decreased by 25% with the new pressure-based 

technique compared to the conventional technique. The 22% decrease in the corrective operations also 

provides indirect evidence in that users had to fix fewer mistakes with the new technique. However, post-

hoc power analysis identified these effects as weak. Section 6.5.12 discusses this in detail. No significant 

effect of technique was identified on the accepted prediction rate. This is not unexpected as both techniques 

enable users to accept predictions by the same method—by tapping on the Space key. 

However, there was somewhat significant effect of technique on the percentage of rejected and ignored 

predictions. This means users rejected (and ignored) more predictions with the new technique. As far as 

one can tell, most of these rejected predictions were instances where the prediction was not the desired 

word. There was also no significant effect of technique on the sum of the mental preparation and physical 

movement times. It can be seen as corroborating evidence that this factor did not contribute significantly to 

the observed differences. Therefore, one can speculate that the main difference was that users accepted 

fewer predicted words incorrectly with the new technique. This reduced the overall error percentage and 

error fixing time. The decrease in corrective operations also supports this observation. 

Most users found text entry with the new technique easier than with the conventional one. Most also 

thought that their entry speed was higher and a majority believed to make fewer errors with the new 

technique. This means that the new technique is perceived as “faster” and “more accurate”. Therefore, it is 

not surprising that most users (83%) favored the new technique over the conventional one. 

The default iPhone keyboard enables special character input by tap-holding the relevant keys for about a 

second. For instance, to input the character “Ē” one first holds down the “E” key for about a second to 

reveal a second level menu containing “Ē” and other diacritics. Then one selects the intended character by 

dragging the finger to the intended character in the menu. This feature was disabled, as users were not 

required to input special characters during the study. However, theoretically this feature could coexist with 

the proposed pressure-based technique, as the pressure-based technique uses a threshold of 200 ms for tap 

time, while the threshold used for special character input is roughly 1000 ms, as identified through video 

recordings. 
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6.5.11  Hybrid Pressure Detection Simulation 

The results for the rate at which the hybrid technique relied on the pressure detection simulation criteria 

here support the observation from the first study that there are three distinct behaviors. Results of this study 

also indicated that a single criterion is not adequate for all users. This again highlights the utility of the 

hybrid pressure detection approach. The percentage of detections of extra pressure via the touch-point-based 

approach was larger (8% vs. 31% in the last study). Thus, one can state that in text entry almost one third of 

all extra pressure taps are best detected through a touch-point-based approach. Besides, user feedback data 

revealed that most users found the new technique to be “accurate”. The hybrid method also sped up text 

entry significantly. The average tap times for regular and extra pressure were 117 and 390 ms, faster than 

Quick-release’s 200 and 400 ms and Dwell’s 1400 and 1700 ms (Brewster and Hughes, 2009), respectively. 

6.5.12  Limitations 

The ANOVAs identified a significant effect of technique on entry speed (WPM), error rate (TER), and 

correction operations (Backspace use). A post-hoc analysis detected a small effect size for all of these 

dependent variables (see Appendix A1). Additional post-hoc analysis revealed that the statistical power did 

not exceed the 0.80 threshold (see Appendix A4) for these dependent variables. In other words, at the small 

effect size level, there was less than adequate statistical power for WPM, TER, and correction operations 

(see Table 7). Although a larger sample size (N) may achieve a sufficiently strong statistical power for 

these dependent variables, it is less likely due to the small effect size. 

Table 7. Detected effect size and measured statistical power. 

Dependent Variable Effect Size (η2) Power (1–β) 
WPM Small << 0.80 
TER Small << 0.80 

Corrective Operation Small < 0.80 (= 0.69) 

Additional Rejected Prediction Rate Medium < 0.80 (= 0.69) 
Ignored Prediction rate Medium < 0.80 (= 0.43) 

Similarly, the ANOVAs identified a significant effect of technique on additional dependent variables, such 

as rejected prediction rate (%) and ignored prediction rate (%). A post-hoc analysis detected a medium 

effect size for these two dependent variables (see Appendix A1). Further post-hoc analysis revealed that the 

statistical power did not exceed the 0.80 threshold (see Appendix A4) at the observed medium effect size 

level. In other words, there was less than adequate statistical power for these dependent variables (see 

Table 7), but it seems likely that a larger sample size (N) may achieve a sufficiently strong statistical power 
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for these dependent variables. However, due to the medium effect sizes, there is a possibility that these are 

not sufficiently strong effects after all. Appendix A4 explains the criteria used for calculating statistical 

power. 

As the study recruited participants by using convenience sampling from the university community, the 

results may not generalize to a larger population. Nevertheless, an attempt was made to counteract this 

potential confound by recruiting not only university students but also instructors and staff. 

 Summary 6.6

This chapter presented a new pressure detection technique that combines the existing time- and touch-

point-based approaches to detect pressure on standard touchscreens. Results of two independent user 

studies showed that the new hybrid technique distinguishes reliably between (at least) two pressure levels: 

regular with about 1 N, and extra with about 3 N. It then presented a new pressure-based predictive text 

entry technique that used the new pressure detection approach to enable users to bypass incorrect predictions 

by applying more pressure on the next target key. Results of a user study showed that when inputting short 

English phrases containing 10% non-dictionary words, the new technique increased entry speed by 9% and 

reduced errors by 25% compared to the conventional technique. However, post-hoc analysis identified these 

to be weak effects. Nonetheless, user feedback data showed that most users (75%) found the hybrid pressure 

detection technique accurate and most (83%) favor the pressure-based predictive text entry technique. 
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Chapter 7  

Conclusions 

This dissertation focused on the effect of errors in character-based text entry techniques from theoretical, 

behavioral, and practical standpoints. The theoretical part develops a mathematical model for predicting the 

cost of error correction for a given text entry technique by carefully observing human error correction 

behaviors. Towards that, a user study was first conducted to investigate the effect of different error 

correction conditions on popular text entry performance metrics. Results showed that the way errors are 

handled has a significant effect on all frequently used error metrics. The outcomes also provided an 

understanding of how users notice and correct errors. Building on this, the dissertation presented a new 

high-level and method-agnostic model for predicting the cost of error correction. Unlike existing models, it 

accounts for both human and system factors and is general enough to be used with most character-based 

techniques. An empirical study verified the model through measuring the effects of a faulty keyboard on 

text entry performance. The behavioral part of the dissertation investigated potential user adaptation to 

frequently occurring text entry errors by conducting two user studies. The studies explored user adaptation 

to a gesture recognizer’s misrecognition errors. Results showed that users gradually adapt to misrecognition 

errors by replacing erroneous gestures with alternative ones, if available. Also, they adapt to a frequently 

misrecognized gesture faster if it occurs more frequently than other error-prone gestures. Finally, based on 

the findings from the theoretical and behavioral investigations, the practical part of the dissertation 

attempted to improve users’ overall mobile text entry performance by developing a more efficient virtual 

keyboard. This part presented a new pressure-based text entry technique that does not require tapping 

outside the virtual keyboard to reject an incorrect or unwanted prediction. Instead, the technique requires 

users to apply extra pressure for the tap on the next target key. Results of a user study showed that for 

inputting short English phrases with 10% non-dictionary words, the new technique increases entry speed by 

9% and decreases error rates by 25%, compared to the conventional technique. Also, almost all users favor 

the new technique over the conventional one. Together, the research presented in this dissertation gave 

more insight into on how errors affect text entry and also presented an improved text entry method. The 

following sections summarize the findings from each chapter.  

This dissertation started with a review of the existing literature regarding character-based text entry and 

transcription typing in Chapter 2. The review covered all important character-based text entry techniques, 

along with their benefits and shortcomings, and mentioned the factors that influence text entry performances 

with these techniques, such as tactile feedback and size. Several alternative modalities used in text entry, 



 

 

131 

such as pressure and chords, were also discussed. The review collected data from the literature to understand 

where these techniques stand globally in terms of speed and accuracy. Towards this, the most popular text 

entry performance metrics were also analyzed. In addition, experimentally established cognitive, perceptual, 

and physical phenomena in transcription typing were summarized. Finally, the review provided a 

comprehensive evaluation of human and system errors and error correction behaviors through existing 

concepts, theories, and error classifications strategies. 

Chapter 3 investigated if different error correction conditions used in user studies affects the ratings of 

popular performance metrics. Results of a user study showed that the way human errors are handled has a 

significant effect on all commonly used error metrics. Furthermore, results showed that the proportion of 

character- and word-level error corrections in text entry is almost balanced 50-50%. 

Based on Chapter 2 and Chapter 3, Chapter 4 proposed a new model for predicting the cost of error 

correction for character-based text entry techniques. The model was verified against values derived from 

the literature and by conducting a user study. The model predicted and the results of the subsequent study 

verified that human text entry performance decreases with increasingly error prone systems. Potential 

applications of the new model were also discussed. 

It is commonly assumed that users gradually adapt to a non-fatal bug or system error if it remains in the 

system for long enough. However, no empirical study explored this (so far hypothetical) phenomenon. 

Therefore, Chapter 5 conducted two user studies to investigate whether users adapt to a unistroke gesture 

recognizer’s (injected) misrecognition errors or not. Results confirmed that users gradually adapt to such 

errors and this adaptation rate depends on how frequently they occur. That is, users adapt to an error faster 

if it occurs more frequently than the others. Based on this, several recommendations were made for gesture-

based user interface designers that could enhance the accuracy and the usability of their techniques. This 

chapter also speculated on potential implications of this work. 

Chapter 6 presented a new pressure detection simulation technique, which is a hybrid between the existing 

time-based and a new touch-point-based approach to detect pressure on standard touchscreens. The new 

technique was evaluated in two user studies that confirmed that it could distinguish (at least) between two 

pressure levels: regular (~1 N) and extra (~3 N). This approach was applied in a new predictive text entry 

technique for touchscreen-based mobile devices. It enabled users to bypass incorrect word predictions by 

applying more pressure on the next target key. The intention was to improve the overall text entry 

performance by reducing movement, target selection, and visual scan times. The new technique was 

compared with the conventional technique in a user study. Results showed that the new technique increases 
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entry speed by 9% and reduces errors by 25% compared to the conventional one. Post-hoc analysis, 

however, identified these to be weak effects. Yet almost all users favor the new technique over the 

conventional one. 

The following chapter elaborates on several potential extensions of this work and ends with the expectation 

that the findings of this work will encourage researchers and practitioners to further investigate the effect of 

human and system errors in text entry and user interfaces. 
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Chapter 8  

Future Work 

Chapter 3 identified that the way error correction is handled in text entry user studies has significant effect 

on all major error rate metrics such as KSPC, ER, EKS, MSDER, and TER. Further examination will be 

carried out to investigate whether different phrase lengths have an effect on these metrics. 

Chapter 4 presented a cost of error correction model for character-based text entry techniques. The model 

cannot be applied on word-based techniques. In the future, attempts will be made to generalize the model to 

word-at-a-time input techniques, such as speech and handwriting recognition. As the nature of error 

correction with these techniques is fairly similar to character-based techniques and also usually includes 

some form of undo operation, generalizing the model for such techniques seems feasible. In addition, the 

current model will be used to investigate what happens when various human and system parameters such as 

display and input time are changed. It will be interesting to examine the effect of various properties of input 

techniques such as average KSPC on the model too. Chapter 4 also presented the following parameters: 

input time (𝑻𝑻 ) and correction time (𝑻𝑻 ). Further investigation will be carried out in the future to 

investigate if these parameters could be used as performance metrics in general text entry user studies. 

Chapter 5 showed that users gradually adapt to a faulty unistroke gesture recognizer. That is, they start 

using an available alternative method for inputting gestures that are frequently misrecognized by the 

system. However, in the second study no clear pattern for adaptation to the alternative method for injected 

misrecognition error rates below 10% was observed before within the first 70 instances of each letter. Thus, 

in the future a longitudinal study is planned to observe adaptation to injected misrecognition error rates 

well below 10%. Also, this work focused on unistroke gesture recognizers, mainly for simplicity. In the 

future, further experiments may be conducted to investigate whether these results apply for multistroke 

recognizers as well or not. Results also indicated that users’ adaptation to misrecognition errors is dependent 

on how frequently they occur—they adapt to an error faster, if it occurs more frequently. Based on this, a 

mathematical model could be developed to predict adaptation rates. Finally, one can speculate that the 

behavioral traits observed here for gesture-based text entry are relevant to user interface design in general, 

that is, users behave in a similar manner when interacting with any faulty user interface. This is also a topic 

worthy of investigation. 
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Chapter 6 presented a new hybrid method to simulate pressure detection in standard touchscreen-based 

devices. This work verified the effectiveness of the method for two different pressure levels. Future 

investigation will explore whether more than two pressure levels could be detected. The work presented in 

this chapter also applied the hybrid pressure detection technique to predictive text entry. In the evaluation 

users inputted short English phrases in stationary setting and in the portrait position. A future user study 

may verify the statistical strength of the differences for the new method relative to previous work. 

Moreover, the new technique will be evaluated in mobile settings, such as while walking, and in landscape 

mode with two-handed text entry. It may also be examined on relatively larger touchscreen devices such as 

tablets. Finally, the use of pressure in user interfaces will be further explored. One possibility is to use 

pressure for switching between various keyboard modes. For example, the use of three pressure levels to 

switch between lowercase, uppercase, and a special character layout in touchscreen-based virtual 

keyboards. Another possibility is the use of various pressure levels for authenticating mobile users. Such 

technique could enable users to use passwords that require tapping on the keys with various pressure levels, 

which may enhance mobile security. 
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Appendices 

The appendices are sorted alphabetically. 

A1. Effect Size (η2) 

Eta-squared (η2) is a measure of effect size (Cohen, 1988). This measure is intended for ANOVAs, instead 

of Cohen’s d, which was designed for t-tests. η2 describes the ratio of variance explained in the dependent 

variable by an independent variable while controlling for other independent variables. It is a biased 

estimator of the variance explained by the model in the population. As the sample size (N) gets larger the 

amount of bias decreases. Stated simply, it tells us how much an independent variable has affected the 

dependent variable in an empirical study. On average η2 overestimates the variance explained in the 

population. It ranges between 0 and 1. Cohen (1988) offered conservative threshold criteria for η2, where η2 

= 0.0099 constitutes a small, η2 = 0.0588 a medium, and η2 = 0.1379 a large effect15. 

The following equation was used in this dissertation to calculate η2. 

𝜂𝜂 =
𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆

 Equation (20) 

Here, 𝑆𝑆𝑆𝑆  is the sum of squares for the effect of interest, and 𝑆𝑆𝑆𝑆  is the total sum of squares for 

all effects, interactions, and errors in the ANOVA. 

A2. Phrase Set 

Almost all text entry user studies present participants with preselected short phrases of text, which are 

retrieved randomly from a set and are presented to participants one at a time to enter (see Section 2.1).  

                                                             

15 Note that the threshold values to distinguish between small, medium, and large effects are different for other effect 
size measures such as Cohen’s d, f, f2, Glass’s Δ, and Hedges’s g. The following Wikipedia page provides more 
information and the corresponding threshold values for these measures: http://en.wikipedia.org/wiki/Effect_size. 
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During the studies reported in this document, participants entered short English phrases from MacKenzie 

and Soukoreff’s (2003) phrase set. The phases used in the set are moderate in length (28.61 characters on 

average), easy to remember, and representative of the English language. The phrases do not contain any 

numeric and special characters. MacKenzie and Soukoreff (2003) argued that it is best to exclude these 

characters from the interaction, as they do not assist to differentiate the. A few phrases contained uppercase 

characters, which were converted to lowercases for the same reason – as with the investigated techniques 

these characters are inputted using the same keys. This corpus’s high correlation with the character 

frequency in the English language also encouraged researchers to use it in almost all recent text entry 

studies (see Section 2.4). The corpus is available online16. 

A3. Sample Size (N) 

It is possible to calculate the power of statistical tests prior to a study (a priori) to determine the sample size 

(N), that is, the number of participants required. However, a priori power analysis is rarely done in human-

computer interaction research, since it requires knowing the variance in a sample and the difference in the 

means on the dependent variable (effect size) before the data are collected (MacKenzie, 2013). Thus, the 

recommended procedure is to study the existing literature (MacKenzie, 2013). If a similar study reports 

statistically significant results with a particular number of participants, then using that many participants is 

a reasonable choice. The user studies reported in this document follow this recommendation. Section 2.4.3, 

particularly Table 1, presented results from existing text entry studies, similar to the ones reported here, 

along with their sample size. 

A4. Statistical Power (1–β) 

This work used post-hoc power analysis, as motivated in Appendix A3. 

Cohen (1992) defined: “The power of a statistical test of a null hypothesis (H0) is the probability that the 

H0 will be rejected when it is false, that is, the probability of obtaining a statistically significant result”.  

                                                             

16 http://www.yorku.ca/mack/PhraseSets.zip 



 

 

161 

Statistical power analysis exploits the mathematical relationship between the four variables in statistical 

inference: power (1–β), false positive rate (α), sample size (N), and effect size (f). The relationship permits 

one to determine the value of one variable when the other variable values are known. Based on this, post-

hoc power analysis detects a hypothesized 1–β for specified α, N, and f. The false positive rate α is also 

referred to as the probability of a Type I error, while β is referred to as false negative rate or the probability of 

a Type II error. 

Cohen (1992) suggested the use of a threshold of .80, that is, β = .20, for a level of desired power when no 

other basis for setting the value is available. The reason behind this is that it is more misleading to make a 

false positive claim (larger α) than a false negative claim (larger β). As the convention for the significance 

level in HCI is to use a .05 threshold, the use of .80 for desired power (β = .20) makes β four times more 

likely than α, which is a reasonable reflection of their relative importance (Cohen, 1992).  

This work calculated the power of a statistical test using the G*Power software package (Cunningham and 

McCrum-Gardner, 2007). For this purpose, the correlation among the repeated measures, α, N, and f were 

calculated individually for each test and input into the package to obtain the statistical power, 1-β. Cohen’s 

f was calculated from η2, see Appendix A1 above, using the following equation (Faul et al., 2007). 

𝑓𝑓 =
𝜂𝜂

1 − 𝜂𝜂
 Equation (21) 
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