

ROSS Toolkit: An Infrastructure and
API for Building Interactive
Environments

Andrea Bellucci, Aneesh P. Tarun, Ahmed Sabbir Arif, Ali Mazalek

Abstract
Programming responsive and interactive environments
is a complex task that requires extensive knowledge of
hardware and software components as well as many
hours of programming. To cope with these issues we
developed the ROSS (Responsive Objects, Surfaces,
and Spaces) Toolkit that provides an infrastructure and
API to easily build heterogeneous networks of tangible
devices and interactive surfaces. In this position paper
we outline the design rationale, the current state of the
ROSS Toolkit and the contribution for the ITS
community.

Keywords
Toolkits; API; interactive environments, prototyping.

ACM Classification Keywords
H.5.2. Information Interfaces: User Interfaces – input
devices and strategies, prototyping.

Introduction
Developing responsive and interactive environments
involves bringing together heterogeneous devices and
interactive surfaces in the physical space. This requires
a concentrated effort in writing low-level software and
communication protocols for the multitude of devices
encountered [1]. The complexity involved in such an

Copyright is held by the author/owner(s).

TEI 2016, February 14-17, 2016, Eindhoven, The Netherlands

ACM

Andrea Bellucci
Universidad Carlos III de Madrid
Avenida de la Universidad, 30
28911, Leganés, Madrid, Spain
abellucc@inf.uc3m.es

Aneesh P. Tarun
Synaesthetic Media Laboratory
Ryerson University
Toronto, Ontario, Canada
aneesh@ryerson.ca

Ahmed Sabbir Arif
Synaesthetic Media Laboratory
Ryerson University
Toronto, Ontario, Canada
asarif@ryerson.ca

Ali Mazalek
Synaesthetic Media Laboratory
Ryerson University
Toronto, Ontario, Canada
mazalek@ryerson.ca

endeavor might deter researchers and designers from
developing a compelling and engaging user experience.
It is therefore critical for the ITS community to design
simpler tools and abstractions for building applications
that run across a variety of platforms and devices, as a
part of their everyday research [9].

To this end, we developed the ROSS (Responsive
Objects, Surfaces, and Spaces) Toolkit as a complete
re-design of the original ROSS API (Application
Programming Interface) [9] specifications to assist the
development of responsive and interactive
environments that integrates off-the-shelf mobile
devices, Arduino-based custom tangibles, interactive
surfaces, and different software platforms.

The toolkit exposes an API as well as tools for
abstracting low-level communications between
heterogeneous interactive surfaces and reducing the
programming effort for sensor-based and spatial
interactions between devices. The design of the ROSS
Toolkit has been informed by (a) the experience gained
from the previous design, (b) the needs emerging from
the recent technical opportunities, and (c) the lessons
learned from the development of interactive
environments and cross-device interactions in two
different research laboratories (Synlab at Ryerson
University and DEI Lab at Universidad Carlos III de
Madrid).

Design goals
Our design goals for the development of the ROSS
Toolkit are the following.

(G1) Inclusivity: allow for easy inclusion of diverse
hardware platforms as well as newer hardware

platforms such as smartwatches and low-cost
microcontrollers within a single interactive
environment.

Figure 2. An example of XML descriptor file for a mobile
device tracked on an interactive surface.

(G2) Low Threshold/High Ceiling [6]: provide high-
level building blocks to implement complex use cases

Figure 1. An example of the nested
hierarchical structure: a mobile
device is tracked on an interactive
tabletop.

for novice developers (low threshold) while allowing
low-level customizability for expert developers (high
ceiling).

(G3) Technical Abstraction [1]: provide a broad
range of functions and features out-of-the-box, e.g.
high-level APIs for managing data from motion or depth
sensors.

(G4) Extensibility: support extending the API both at
the micro-level (adding new functionalities within the
context of a single project) as well as at macro-level
(extending the API for the entire ROSS community).

The ROSS Toolkit
The ROSS Toolkit provides a conceptual framework that
allows designing interactive environments as
hierarchical nested structures. Every device, screen,
and sensor in an interaction space is mapped within a
hierarchical structure, outlined in an XML descriptor file.
This hierarchical tree (Figure 1) encapsulates
relationships between various entities and determines
how they interact. The XML descriptor (Figure 2) forms
the basis for generating the application code and
managing the communication between different
devices, tangibles, and interactive surfaces.

Together with XML-based authoring, ROSS Toolkit
provides: (1) an API packaged as JavaScript
components within the Node.js environment [7]. This is
exposed to the developers through the XML descriptor
and JavaScript functions, (2) a parser to generate the
source code (from the XML descriptor) to run the
interactive environment, (3) a server running on
Node.js (a cross-platform runtime environment) that
hosts the client applications, registers the connected

clients, and lastly performs the role of a connection and
communication bridge between different devices, and
finally (4) client applications that are served onto a
device’s browser environment and are mostly made up
of JavaScript and CSS files. A client’s UI is first
rendered as a Jade file, an intermediate HTML template
language for applications layout [3]. In the case of
custom tangibles, the parser generates deployable and
Arduino-compatible code.

The API allows implementing interactive environments
using either an XML descriptor or JavaScript code.
Authoring applications using the XML descriptor
supports different levels of abstraction for simplifying
the development process. Consider the hierarchical tree
in Figure 1 for a sample setup of an interactive space
(Figure 3). RSpace is an abstract container that
encapsulates the whole space. Hierarchically, this is the
root node of an application tree. As a part of the API,
this provides spatial context (i.e. coordinate system,
size, and scale of the interactive space) and function-
calls for manipulating the coordinate systems for
devices within the interaction space. RObject is a
container class for sensors, tangible devices, and other
components that constitute an interactive object. The
RSurface class represents all display surfaces. It
supports querying and manipulation of display output
parameters (e.g. screen resolution, orientation) and
touch input parameters (e.g. number of simultaneous
touch points, granularity of touch points). The RInput
and the ROutput classes represent sensors and
actuators respectively. They allow developers to control
the I/O channels: registering for sensor events,
modifying their parameters, and driving the actuators.
Registering for sensor events can be done using event
listeners (traditional approach) or templates to directly

Figure 3. A sample application: the
mobile device is tracked on an
interactive surface exploiting the
reacTIVision fiducial markers [8]. The
mobile device displays an additional
layer of information for the digital
map rendered on the tabletop. For
tracking the position of the tablet, we
exploit the capability of the tabletop
device to recognize reacTIVision
fiducial markers and use the TUIO
protocol [8] to transport all the
relevant information, such as the
position, speed, and rotation.

link a sensor input with an actuator output or a function
parameter.

Positioning
The contribution of our work for the audience of this
workshop is twofold.

(1) The experimentation with the ROSS Toolkit will
highlight what kind of meaningful interactions are
favored/precluded by its design rationale and features.
This way, we will be able to investigate the different
facets of the infrastructure problem [1] and reflect on
design drivers and implications to build shared
infrastructures for tangible tabletops and interactive
surface, e.g. level of technology abstraction, end-user
development, inclusivity, the “low threshold/high
ceiling” trade-off, breadth of API coverage and
extensibility.

(2) ROSS Toolkit uses and builds upon TUIO to simplify
cross-device communication. However, the TUIO
protocol presents limitations when it comes to manage
data from heterogeneous sensing sources. With our
solution, which allows developers to extend TUIO in
order to encode and transport custom event data, we
aim to start a discussion on what features are needed
for novel communication abstraction mechanisms to
support the interaction between multiple tangible
devices and surfaces in a space.

Acknowledgements
This work has been supported by the Canada Research
Chairs program and the 2015 UC3M postdoctoral
mobility scholarship.

References
[1] Keith Edwards, Mark W. Newman, and Erika
Shehan Poole. 2010. The infrastructure problem in HCI.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '10). ACM, New
York, NY, USA, 423-432.

[2] Saul Greenberg. 2007. Toolkits and interface
creativity. Multimedia Tools and Applications 32, 2:
139–159.

[3] Jade Template Engine. 2015. Retrieved September
20, 2014 from http://jade-lang.com

[4] Martin Kaltenbrunner and Ross Bencina. 2007.
reacTIVision: a computer-vision framework for table-
based tangible interaction. In Proceedings of the 1st
international conference on Tangible and embedded
interaction (TEI '07). ACM, New York, NY, USA, 69-74.

[5] Nicolai Marquardt, Robert Diaz-Marino, Sebastian
Boring, and Saul Greenberg. 2011. The proximity toolkit:
prototyping proxemic interactions in ubiquitous computing
ecologies. In Proceedings of the 24th annual ACM
symposium on User interface software and technology
(UIST '11). ACM, New York, NY, USA, 315-326.

[6] Brad Myers, Scott E. Hudson, and Randy Pausch.
2005. Past, present, and future of user interface
software tools. ACM Trans. Comput.-Hum. Interact. 7,
1: 3–28.

[7] Node.js JavaScript Runtime. 2015. Retrieved
September 20, 2014 from https://nodejs.org

[8] TUIO Protocol. 2015. Retrieved September 20,
2014 from http://www.tuio.org

[9] Andy Wu, Sam Mendenhall, Jayraj Jog, Loring
Scotty Hoag, and Ali Mazalek. 2012. A nested API
structure to simplify cross-device communication.
In Proceedings of the Sixth International Conference on
Tangible, Embedded and Embodied Interaction (TEI
'12), Stephen N. Spencer (Ed.). ACM, New York, NY,
USA, 225-232.

