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Abstract—This paper presents Woodpecker, a playful mobile
user authentication method that enables users to authenticate
themselves by performing back-of-device tap rhythms. It uses
the microphone and accelerometer data of an off-the-shelf smart-
phone to compare the sequence, frequency, and intensity of tap
rhythms to authenticate users. In a study, Woodpecker yielded a
moderate accuracy (70%) and a low successful attack rate (17%)
in an ideal shoulder surfing threat model with only three sample
rhythms. Besides, most participants found the method easy-to-
use and more secure than the conventional methods, thus wanted
to keep using it on their devices.

Index Terms—Usable security, security, back-of-device, smart-
phone, user authentication, audio input, gyroscope, accelerome-
ter, shoulder surfing

I. INTRODUCTION

Securing mobile devices is important as they acquire sensi-
tive information over time and often have access to wireless
services and organizational networks [1]. In spite of that, many
mobile users (28%) do not use a user authentication method to
secure their devices since they find it to be an inconvenience
[2]. Besides, those that use a user authentication method do
not always pick a strong password or update their passwords
regularly, which reduces the effectiveness of the methods. In
fact, maintaining a sensible balance between the security and
the usability of user authentication methods has long been a
challenge since increasing the security of a method usually
compromises its usability, discouraging users to use it, while
making it more usable tend to compromise its security.

Woodpecker is a novel playful, user-friendly, yet secure user
authentication method that enables users to tap secret rhythms
on the back of mobile devices to authenticate themselves. It
is inspired by the age-old concept of “secret knock”, a knock
sequence to allows access only to those who know the correct
knock. But unlike a secret knock, Woodpecker accounts for not
only tap sequence but also tap frequency and intensity, which
enables users to tap their favorite tunes as passwords. With this
method, users first select a tap rhythm as their password, then
repeats it to unlock mobile devices. Its design is motivated
by the following considerations. First, its playful nature can
encourage mobile users that are reluctant on securing their
devices to start using a user authentication method. Since the
method enables users to select tap rhythms representing their
favorite music or tunes, it can also motivate them to change

their passwords more frequently in keeping with their current
musical taste, like some users frequently change their ringtones
[3]. Second, Woodpecker does not leave any oily residue on
the screen since it is used on the back-of-device. Prior studies
showed that attackers can easily guess passwords by studying
the smudges left on the touchscreen [1], [4]. Back-of-device
interaction also hides finger movements behind the device, and
soft taps usually do not make any audible noise, making it
difficult for attackers to guess the passwords. These make the
method more secure than the traditional digit and pattern lock
methods. Finally, Woodpecker does not use touch, therefore
can be appropriated for devices that do not have a touchscreen
or a display, such as to turn on a projector, unlock a door, or
turn on the radio in an automobile.

The reminder of the paper is organized as follows. It starts
with a review of the literature, focusing on existing rhythm-
based user authentication methods and methods for detecting
back-of-device interactions. Then, it presents Woodpecker and
describes its system architecture, informed by the findings of
two pilot studies. It then presents the results of an empirical
study evaluating Woodpecker’s usability and security. Finally,
it summarizes the contributions and limitations of the work,
and reflects on potential future extensions.

II. RELATED WORK

Not many have explored the possibility of using tap rhythms
as passwords on mobile devices. TapSongs [5] enables user
authentication by performing a sequence of tap-up and tap-
down events using a single binary sensor, such as a physical
button. RhythmLink [6], Beat-PIN [7], and TapMeIn [8] use a
similar principle that authenticate users through a sequence of
touch-up and touch-down events on the touchscreen of mobile
or wearable devices. RhyAuth [9] is also similar, but enables
users to both tap and slide to produce rhythm passwords.
Arif et al. [10] also use tap and stroke to authenticate users,
but do not facilitate creating a rhythm. Arif and Mazalek
[11] enable user authentication by performing a sequence
stroke and pause on the touchscreen. Aydemir and Toslak
[12], on the other hand, attached a force-sensitive button on
a door to authenticate users based on the stroking pattern
and force on the button. However, the most relevant to this
work is Thumprint [13], a group authentication method that
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authenticate group members via shared secret knocks. In an
ideal setting, its success rate and successful attack rate were
estimated as 85–91% and 13–19%, respectively. None of these
works, however, investigate back-of-device tap rhythms or
account for both tap sequence, frequency, and intensity.

There has been some research in the detection of back-of-
device taps, touches, grips, and gestures. Most of these works
either require additional hardware [14]–[20] or provide binary
output signal [21], [22]. In addition to these, Lopes et al. [23]
augmented touch with acoustic sensing to facilitate expressive
gestures, such as tap, knock, slap, and punch, on an interactive
tabletop. Sun et al. [24], in contrast, used the built-in speakers
and microphones of a smartphone to detect back-of-device taps
and gestures. Hudson et al. [25] proposed using accelerometer
data to detect expressive gestures on mobile phones. Seipp
and Devlin [26] detected finger-specific gestures using built-in
microphone and gyroscope of a smartphone. Zhang et al. [27]
used the built-in accelerometer, gyroscope, and microphone of
a smartphone to detect one-handed, two-handed, and on-table
taps. A few have also proposed back-of-device authentication
methods. De Luca et al. [28] designed a method where user
authenticates themselves by performing a row of simple shapes
on the back of the device. Leiva and Català [29] simplified this
method by considering tap contacts as the main primitives.

III. PILOT STUDY 1

We conducted a pilot study to investigate if microphone,
accelerometer, and gyroscope data are sufficiently reliable to
detect and compare back-of-device tap sequence, frequency,
and intensity. The study collected microphone data from four
conditions: (I) quiet room (40 dBA), (II) crowded room (60–
70 dBA), (III) quiet outdoors (70–90 dBA), and (IV) noisy
outdoors (90–110 dBA); and accelerometer and gyroscope data
from two conditions: (I) in a seated position and (II) while
walking.

Fig. 1. Erratic gyroscope data in a seated position. All three axis readings
are jagged and often cross with each other. The x and y axis of the graph
represent time (ms) and angular velocity (deg/s), respectively.

We used a Motorola G5 Plus smartphone (15.02×7.4×0.77
cm, 155 g) running on Android OS 7.0 at 1080×1920 pixels. A
custom Web app was developed using HTML5 and JavaScript
to record accelerometer, gyroscope, and microphone data. It

Fig. 2. Noisy microphone data with loud ambient noise. The x and y axis of
the graph represent time (ms) and amplitude, respectively.

Fig. 3. Accelerometer data while waling. Sudden hand movements caused
sharp peaks or drops in all axes, concealing the taps. The x and y axis of the
graph represent time (ms) and acceleration (m/s2), respectively.

was accessed using the Mozilla Firefox (v61.0) browser for
Android OS. During the pilot study, five participants (aged
22–29 years, all male) were instructed to hold the device in
upright position and tap on the back of the device 10 times in
approximately 1.0 second interval. Each participant performed
this pattern 10 times per condition, resulting in 5×6×10 =
300 patterns in total. The app did not guide participants on
when to tap since we wanted to find out whether they can
maintain a constant tempo. Analysis of the data revealed that
(I) gyroscope data is not reliable in any condition (Fig. 1),
(II) microphone data is not reliable in noisy environments
(Fig. 2), (III) accelerometer data is not always reliable in
mobile settings (Fig. 3), and (IV) tap intensity and tempo
varies both within and between participants. In summary, the
pilot revealed that gyroscope data is too noisy to detect and
compare tap patterns. Microphone and accelerometer data are
mostly reliable but fails in some settings even when noise
reduction methods are applied. Hence, we decided to exclude
gyroscope and use both microphone and accelerometer data to
support a wider range of settings. We also found out that it is
difficult for users to maintain a steady frequency and intensity.
We further explored this in a second pilot study.

IV. PILOT STUDY 2

The purpose of this pilot study was to investigate if users can
maintain a steady frequency and intensity for self-selected tap
patterns and to determine an effective method for comparing
the patterns.

A. Apparatus

We used a Motorola G5 Plus smartphone (15.02×7.4×0.77
cm, 155 g) running on Android OS 7.0 at 1080×1920 pixels. A
client-server model was used to record and process accelerom-
eter and microphone data. The client was a custom Web app
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Fig. 4. Two participants performing back-of-device tap rhythms in the second
pilot study.

that was developed with HTML5 and JavaScript. It recorded
and sent a file in Wave File Audio (.wav) format and an integer
array of acceleration data (rate of velocity change) to a server
running on a 13′′ MacBook Pro Retina (2.4GHz, Intel Core i5,
8GB 1600MHz DDR3) running on MacOS Mojave (v10.14.6).
The server extracted Mel-Frequency Cepstrum Coefficients
(MFCCs) feature from the audio file (.wav) using LibROSA1,
processed the microphone and accelerometer data using Web
Audio API2 and SciPy Python Library3, respectively, then sent
the results to the client. We used the Flask Python Library4

to establish connection between the client and the server. The
app was accessed using the Mozilla Firefox browser (v61.0)
for Android.

1) Rhythm Comparison: The system compared tap rhythms
using the Fast Fourier Transform (FFT) and the Dynamic Time
Warping (DTW) algorithms [30]. FFT transforms time domain
into frequency domain to analyze time-dependent phenomena.
We used it to compare the amplitudes and frequencies of two
rhythms. We used DTW to identify the same rhythm with
different tempo. DTW is a time series analysis algorithm that
measures the similarity between two temporal sequences that
may vary in speed.

B. Participants

Fifteen participants voluntarily took part in the pilot study
(Fig. 4). Their age ranged from 23 to 34 years (M = 26.2,
SD = 3.05). Five of them were female and ten were male.
They had on average 6.4 years (SD = 2.2) of experience with
touch-based devices. Fourteen of them were right-handed and
one was ambidextrous. The ambidextrous person chose to use
his right hand to perform the tap patterns.

C. Design and Procedure

The pilot study was conducted in a moderately quiet office
room. Upon arrival, we explained the study procedure to all
participants and collected their consents. They then completed
a short demographics and mobile usage questionnaire. The
main study started after that, where participants were asked to

1https://librosa.github.io/librosa
2https://developer.mozilla.org/en-US/docs/Web/API/Web Audio API
3https://docs.scipy.org/doc/scipy/reference
4https://palletsprojects.com/p/flask

hold the device with their preferred hand in any orientation,
then tap a rhythm of their choice on the back of the device for
6 times (15×6 = 90 patterns in total). The app automatically
recorded and analyzed microphone and accelerometer data.

D. Results and Discussion

All participants chose to hold the device in portrait position
with the right hand and perform the taps using the index finger
of the same hand. Similar to the first pilot study, participants
were having difficulty in maintaining a steady frequency and
intensity. We observed a high variability in the patterns. On
average there were 6.93 peaks (SD = 4.81) per rhythm; with
an average duration of 4.96 seconds (SD = 2.53) per peak.
The average maximum and minimum peaks were 6871.90 dB
(SD = 8131.2) and –7411.14 dB (SD = 9265.4), respectively.
This indicates a high variability in both rhythm frequency
and intensity. FFT and DTW scores also corroborate this. The
average FFT and DTW scores were 111.25 (SD = 28.59) and
826.125 (SD = 1732.39), correspondingly. This suggests that
comparing tap rhythms using either FFT or DTW alone could
yield misleading results since users tend to vary intensity (they
often tap harder or softer than the usual) and frequency (they
often tap faster or slower than the usual) when performing the
same rhythm.

V. SYSTEM ARCHITECTURE

Woodpecker requires users to select a tap rhythm as their
password by performing it three times on the back of the
device. The system then performs FFT and DTW to calculate
Mean Square Error (MSE) and Minimum Distance (MD)
between the rhythms, respectively. MSE = 0 & MD = 0 implies
that the two compared rhythms are identical, while MSE > 0
& MD = 0 indicates that they are identical when the tempo
is disregarded. The system identifies the maximum MSE and
MD values that yield a match for all rhythms, then stores
those for each user as thresholds. The system also records the
total number of peaks, calculated by performing Continuous
Wavelet Transform (CWT) on the accelerometer data. Fig. 5
illustrates the architecture of the proposed method.

When a user performs a tap rhythm, the system counts the
total number of peaks in the rhythm, then compares it (Pattern
4) with the sample rhythms (Patterns 1–3) to calculate MSE
and MD values. The user is authenticated when the number
of peaks matches and the MSE and MD values are above
the thresholds calculated for the users using the three samples
recorded during the password selection process. We used this
approach based on the findings of the pilot studies—to reduce
incorrect authentications (false positives), as well as to cope
with small fluctuations in the intensity and tempo.

VI. USER STUDY: EVALUATION

We conducted an empirical study to evaluate Woodpecker in
terms of reliability, usability, and security. A shoulder surfing
threat model was used to test the security of the method.
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Fig. 5. Architecture of the proposed user authentication method.

A. Apparatus

The study used the same device and the custom app as the
second pilot study. But unlike the pilot, the app displayed a
message on the screen (visual feedback) indicating whether an
authentication attempt was successful or not.

B. Participants

Twelve participants voluntarily took part in the final study.
Their age ranged from 21 to 35 years (M = 26.16, SD =
3.05). Three of them were female and nine were male. Thy
all were frequent smartphone users. They had on average 7.5
years (SD = 1.78) of experience with smartphones. Eleven of
them were right-handed and one of them was ambidextrous.
The ambidextrous participant chose to use the right hand to
perform the tasks.

Fig. 6. Volunteers participating in the study. Seated participants are unlocking
the device with tap rhythms and standing participants are executing shoulder
surfing attacks.

C. Design and Procedure

The study was conducted in a quiet room. Upon arrival, we
demonstrated Woodpecker and explained the study procedure
to all participants. In order to discourage tap rhythms that are

audible to bystanders, we informed the participants that they
do not have to tap hard on the back of the device since the
system can pick up on even softer taps. We then collected their
consents and asked them to complete a short demographics and
mobile usage questionnaire. We randomly paired participants
for one of them to play the role of a “user” and another the
role of an “attacker”. The user was instructed to pick a tap
rhythm as her password. For this, she performed a tap rhythm
of her choice three times on the back of the device. The custom
app automatically recorded microphone and accelerometer
data and calculated the thresholds for the user. We then asked
her to unlock the device five times by performing her password
rhythm. The app recorded all successful and unsuccessful
attempts. Users were not required to re-enter the password on
unsuccessful attempts. The attacker, on the other hand, was
instructed to observe the authentication process by standing in
close proximity to the user (Fig. 6). We enabled the attacker
to change position for an unobstructed view of the password
entry process in an attempt to create an ideal shoulder surfing
threat model. We then instructed her to crack the pattern in
five attempts. Like the authentication process, the app recorded
all successful and unsuccessful attacks. Each participant went
through this process for three times, then switched roles—
participants that played the role of a user became attackers
and vice versa. Hence, the within-subjects design was:

User Attacker
12 participants × 12 participants ×
3 tap rhythms × 3 tap rhythms ×
5 attempts = 5 attacks =
180 attempts, in total 180 attacks, in total

Upon completion of the study, participants were asked to
take part in a semi-structured interview that inquired about
their tap rhythm selection strategy and opinion about various
aspects of the authentication method.
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VII. RESULTS

A complete study session took about 40 minutes to com-
plete, including demonstrations and optional breaks.

A. Orientation, Position, and Posture

We enabled participants to hold the device and perform
the tap rhythms in their preferred orientation, position, and
posture. Yet, all participants chose to hold the device in portrait
position with the right hand, and performed the taps using
the index finger of the same hand. One participant (8%) also
used the middle finger to perform some taps. Some of the
participants occasionally held the device with two hands for
added support (Fig. 6, left). Most participants (92%, N = 11)
performed the taps at the center of the device, while one (8%,
N = 1) performed at the top-right corner.

Fig. 7. Comparison of two rhythms performed by the same user. Both
(left) Mean Square Error (MSE) and (right) Dynamic Time Warping (DTW)
indicating a match.

B. Tap Rhythms

On average, tap rhythm passwords were composed of 4.1
taps (SD = 1.4). The average maximum and minimum intensity
of peaks were 10532.96 dB (SD = 3913.64) and –9749.26 dB
(SD = 3666.73), respectively. The average duration of peaks
was 2.70 seconds (SD = 0.62).

TABLE I
SUCCESSFUL AUTHENTICATION AND ATTACK ATTEMPTS PER PARTICIPANT
(N) WITH TRUE POSITIVE AND FALSE POSITIVE RATES. NOTE THAT EACH

PARTICIPANT MADE 15 AUTHENTICATION AND 15 ATTACK ATTEMPTS.

N Authentication TPR FPR Attack
1 12 0.80 0.20 1
2 12 0.80 0.20 1
3 12 0.80 0.20 0
4 13 0.86 0.13 3
5 9 0.60 0.40 3
6 7 0.46 0.53 2
7 9 0.60 0.40 6
8 9 0.60 0.40 1
9 10 0.66 0.33 2
10 11 0.73 0.26 7
11 9 0.60 0.40 2
12 12 0.86 0.20 2

C. Reliability and Security

Table I presents the total number of successful (Fig. 7) and
failed authentication attempts per participant. Fig. 8 illustrates
a Receiver Operating Curve (ROC) that plots the true positive
rate (TPR) against the false positive rate (FPR). Woodpecker
yielded a moderate accuracy rate of 70%. On average 11 out of
15 valid attempts (SD = 1.75) were successful in authenticating
the users. However, Woodpecker yielded a relatively low attack
rate of 17%. On average only 2.5 out of 15 attacks (SD = 1.9)
were successful in cracking the passwords.

Fig. 8. Receiver Operating Curve (ROC) for Woodpecker at the examined
threshold settings.

VIII. USER FEEDBACK

Upon completion of the user study, participants took part
in a semi-structured interview that asked them about their tap
rhythm selection strategy and opinion about various aspects of
Woodpecker.

A. Password Selection

When asked about the strategy employed to select their
passwords, most participants (58%, N = 7) responded that they
picked their favorite songs or tunes. The remaining participants
picked rhythms that are easy to remember (25%, N = 3) and/or
easy to perform (17%, N = 2). Most participants (92%, N =
11) found tap rhythms easy to recall during the study, while
one (8%) found it difficult.

B. Mental and Physical Stress

Most participants responded that performing back-of-device
rhythms did not cause any cognitive (92%, N = 11) or physical
stress (83%, N = 10). However, some participants reported
slight cognitive (8%, N = 1) and physical stress (17%, N = 2)
for extensive use. Note that we encouraged all participants to
take breaks between the blocks, but not all obliged.

C. Willingness to Use

Most participants (67%, N = 8) wanted to use Woodpecker
on their mobile devices, while one was undecided (8%) about
it. One participant (male, 24 years) responded, ‘‘Yes [I will
use Woodpecker], because it is secure”. Likewise, another
(male, 27 years) responded, ‘‘Yes [I will use Woodpecker as it
is] convenient [and leaves] no smudges on the touchscreen”.
The remaining three participants (25%) were on board with
the idea but did not want to use the current version due to
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its relatively high false negative rate. One of them (male, 28
years) responded, “I won’t use the current version as it’s not
robust enough”.

D. Security

When enquired about their experience as shoulder surfers,
most participants (92%, N = 11) responded that it was very
difficult. One participant (male, 25 years) responded, “It was
difficult because finger movements were not visible, and the
back side of the phone was not visible. The taps were also
not audible [...]”. Another participant (female, 31 years)
commented, “[Initially, it] felt easy but it was difficult. The
patterns [entered by the others] were unrecognizable”. Many
pointed out that they were able to crack some passwords since
they were provided with an ideal shoulder surfing setting,
and felt that it will be much more difficult in real-world.
One participant (female, 27 years) stated, “It will be [difficult
in real-world scenarios] as there will be other sounds and
the back of the device will not be visible, [making] the pat-
terns indistinguishable”. Likewise, another participant (male,
35 years) responded, “It will be very difficult to crack the
passwords in open environment”.

IX. DISCUSSION

The proposed method yielded a 70% accuracy rate and a
17% successful attack rate. The successful attack rate is im-
pressive considering that attackers were provided with an ideal
threat model, where they were provided with a quiet room, and
unobstructed and repeated views of the authentication process.
Almost all studies evaluating novel user authentication meth-
ods allow only one view of the authentication process in their
threat models [28]. The accuracy rate of the method is not
as impressive, which could be due to the “Hawthorne Effect”
[31] that suggests that users tend to modify their behavior in
response to their awareness of being observed. The fact that
attackers were studying them while entering the passwords
may have affected their input, resulting in some failed attempts
(relevantly, Woodpecker yielded a much higher accuracy rate
in pilot studies). Thumprint [13], a similar method, yielded
a 85-91% accuracy rate and 13-19% successful attack rate.
This method, however, was designed to authenticate group
members (all members of a group shared the same password),
hence likely tolerated a higher variances in the data. Besides,
Thumprint used 10 samples, when we used only 3. We believe
that the accuracy of the proposed method can be improved by
fine-tuning the mechanism used for determining the thresholds
for matching tap rhythms. Improvement on this is a direction
for future work.

A. Limitations

We identified several limitations of the proposed method.
1) Diverse Settings and Attachments: Although the method

yielded a comparable performance in all explored settings, its
performance is likely to reduce in extremely noisy environ-
ments, when commuting [32], and in different orientations,
positions, and postures. In extremely loud environments (e.g.,

at a rock concert), the noise in the microphone data could
conceal tap rhythms. Likewise, there could be severe changes
in the velocity and the peaks when the user’s hand is shaking or
moving (e.g., when taking a bumpy ride). However, we argue
that these could be addressed by collecting more sample and
using more sophisticated smoothing and matching algorithms.
This is a scope for future research. Besides, users tend to use
different types of covers, cases, and attachments for grip [33],
[34] on mobile devices. While theoretically the method should
work on devices with attachments, we did not test this in our
studies.

2) Guessable Tunes, Hard Taps, and Nails: Using popular
tunes as passwords could reduce the security of the method as
some attackers may be able to successfully guess a password.
However, using a popular tune is much more secure than
using a common personal identification number (PIN) like
“1234”, because the second pilot showed that different users
tend to tap the same rhythm differently, thus are not identical.
Further, some users may tap hard, making the rhythm audible
to bystanders, compromising the security. We observed this in
the pilot studies, thus informed the participants that they do
not have to tap hard for the system to recognize the patterns.
Tapping with nails or knuckles poses similar risks.

X. CONCLUSION

This paper presented Woodpecker, a playful mobile user
authentication method that enables users to select back-of-
device tap rhythms as their passwords. It uses the built-in
microphone and accelerometer of an off-the-shelf smartphone
to detect and distinguish between different tap rhythms. We
conducted a user study to evaluate the reliability, usability, and
security of the method, where it yielded a 70% accuracy rate,
and a 17% successful attack rate in an ideal shoulder surfing
scenario. Besides, most participants found the method easy-
to-use, more secure than the traditional digit and pattern lock
methods; and wanted to keep using it on their mobile devices.

The contribution of this work is twofold. First, it demon-
strated that secret back-of-device tap rhythms can be used to
authenticate mobile users, potentially increasing the usability
and security. Second, based on the findings of a study, this
work discussed design considerations and the challenges that
remains in the area, which may inspire researchers to design
and develop more effective and secure user authentication
methods.

XI. FUTURE WORK

In the future, we will address the limitations listed above.
We will apply machine learning approaches to learn users’ tap
behaviors in various settings. We believe, this will increase
the reliability of the method. In addition, we will explore the
possibility of using the method on wearables and devises that
do not have a display and for other types of authentications,
such as to pair devices.
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