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ABSTRACT 
Silent speech input converts non-acoustic features like tongue and 
lip movements into text. It has been demonstrated as a promising 
input method on mobile devices and has been explored for a variety 
of audiences and contexts where the acoustic signal is unavailable 
(e.g., people with speech disorders) or unreliable (e.g., noisy envi-
ronment). Though the method shows promise, very little is known 
about peoples’ perceptions regarding using it. In this work, frst, 
we conduct two user studies to explore users’ attitudes towards 
the method with a particular focus on social acceptance and error 
tolerance. Results show that people perceive silent speech as more 
socially acceptable than speech input and are willing to tolerate 
more errors with it to uphold privacy and security. We then conduct 
a third study to identify a suitable method for providing real-time 
feedback on silent speech input. Results show users fnd an abstract 
feedback method efective and signifcantly more private and secure 
than a commonly used video feedback method. 

CCS CONCEPTS 
• Human-centered computing → Natural language inter-
faces; Text input. 
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1 INTRODUCTION 
Speech input on mobile devices continues to evolve at a rapid pace 
as the speech recognition technologies get better at understanding 
users’ voice commands. This method ofers the opportunity for 
faster and seamless hands-free information access, especially when 
users’ hands are busy performing other tasks or when touching 
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public devices is to be avoided in times like the current COVID-19 
situation. Prior research showed that speech input is a viable 
solution for accessing information on small-screen devices where it 
allows users to access information faster than traditional on-screen 
input methods [102]. A major challenge with this method, however, 
is users’ reluctance to use speech in pubic places due to privacy and 
security concerns [36, 37, 78, 92]. Additionally, voice recognition 
accuracy is heavily afected by ambient noise [69] and the method 
is not well supported for people with speech disabilities1. 

Silent speech input, which interprets users’ lip and tongue mo-
tions into text, has been shown as a promising alternative to 
speech input [32, 38, 43, 54, 55, 104, 110]. Researchers explored 
diferent video-based [2, 13, 27, 28] and advanced sensor-based 
[83, 84, 95, 113] recognition methods where they showed high accu-
racy in speech recognition with silent speech input. A recent work 
[110] explored silent speech input on mobile devices, where users 
expressed a higher level of satisfaction with this input method over 
the tradition speech input. In spite of promising results, very little 
is known on factors such as social acceptance and error tolerance 
that could infuence users’ willingness to use this input method. 
Consequently, the extent to which this input method is viable on 
mobile devices is an open question. 

In this paper, we explore users’ attitudes towards speech and 
silent speech input methods with a focus on social acceptability, 
and user tolerance of recognition errors in these methods. We 
frst conduct a crowdsourced study examining social acceptance of 
these methods considering diferent factors, including users’ and 
viewers’ perspectives towards using these in diferent locations 
and in front of diferent audiences. Results show that, in general, 
people prefer using silent speech input over traditional speech 
input. Since prior research suggests that silent speech input can 
be error-prone [33, 82], we conducted another study to explore 
users’ attitude towards recognition errors associated with the two 
methods. Results reveal that users are willing to tolerate more 
errors with silent speech input than speech input as it ofers a 
higher degree of privacy and security. Inspired by the fndings, 
we further investigate suitable feedback method for silent speech 
input. Results show that users fnd both a commonly used video 
and an abstract (a blinking dot) feedback efective but the latter 
signifcantly more private, more secure, and less intrusive than the 
video feedback. 

To summarize, in this work we: i) explore the social acceptance 
of speech and silent speech input in diferent social contexts; ii) 
investigate user tolerance of recognition errors in the two methods; 

1SheSpeaks, https://www.shespeaks.com/why-the-speech-impaired-feel-left-out-of-
the-voice-assistant-revolution 
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iii) identify suitable feedback mechanism for silent speech input; 
and iv) propose a set of recommendations for using silent speech 
input on mobile devices. 

2 RELATED WORK 
This work intersects with four areas of interest: speech input, silent 
speech input, social acceptance of technology, and users’ and view-
ers’ perspectives. 

2.1 Speech Input 
Speech input enabled devices, such as personal voice assistants, 
allow users to communicate with computer systems using speech 
commands. Personal voice assistants like Siri, Google Assistant, 
Alexa, and Cortana can interpret human speech and handle a wide 
variety of tasks [53, 72]. Research on speech input mainly focused 
on the recognition of speech [75, 106, 119], language models [7, 17] 
and voice controlled systems [121]. Clark et al. [29] provides a 
comprehensive review of the literature on speech-based input and 
interaction methods. With the recent advances in speech recogni-
tion technology [1, 44, 87, 91, 108], today’s voice-based commercial 
products [23, 48, 62, 116–118, 120] can perform streaming, high-
accuracy, low-latency speech recognition [15, 68] to revolutionize 
human-computer interaction [29]. Recently, He et al. [49] presented 
an end-to-end speech recognizer for on-device speech recognition 
using a recurrent neural network, which has been deployed in the 
default Google keyboard on the fagship Pixel phones. Despite its 
popularity, studies show privacy and security concerns for the use 
of personal voice assistants and voice search commands in public 
places [36, 37, 78, 92]. A survey2 revealed that 39% smartphone 
users use the built-in voice assistants at home but only 6-14% use 
these in public [85]. To uphold the privacy and security of users, 
researchers explored whisper input, which is a variant of speech 
input with a signifcantly lower energy than normal speech. These 
works detected whispered speech using a stethoscopic microphone 
that contacts the skin behind the ear [79], a throat microphone [59], 
and a non-contact microphone by placing it very close to the front 
of the narrowly opened mouth [40]. Recently, Amazon included a 
whisper mode to their personal voice assistant Alexa3. When users 
whisper to Alexa, it whispers back to them. Some have also incorpo-
rated state-of-the-art machine learning techniques to improve the 
performance of whisper speech recognition [41, 42, 45]. However, 
whispers with a much lower acoustic power and relatively fat spec-
trum than regular speech are inherently noise-like, thus are highly 
susceptible to acoustic interference [76]. Moreover, long-term use of 
whisper voice might have negative efects on our vocal cords [103]. 

2.2 Silent Speech Input 
Silent speech input enables users to communicate with a computer 
system using speech commands without the need for producing 
any audible sound. Unlike speech input, this method allows users 
to communicate efciently with computer systems without hurt-
ing privacy and security or disrupting the environment. There 

2Creative Strategies, https://creativestrategies.com/voice-assistant-anyone-yes-
please-but-not-in-public
3Digital Trends, https://www.digitaltrends.com/home/how-to-enable-whisper-mode-
on-alexa 

have been several previous attempts at achieving silent speech 
communication. Many have explored silent speech enabled input 
and interaction methods that use diferent sensors (e.g., electro-
magnetic articulography (EMA) [38, 43, 50], electroencephalogram 
(EEG) [88], electromyography (EMG) [56–58, 74, 105, 115], ultra-
sound imaging [31, 32, 39, 43, 50, 54, 55, 61], vibrational sensors 
of glottal activity [83, 84, 95, 113], speech motor cortex implants 
[18], and non-audible murmur (NAM) microphone [51, 52, 80]) to 
recover the speech content produced without vibration of the vocal 
folds, by detecting tongue, facial, and throat movements. Some have 
developed intracortical microelectrode Brain-Computer Interfaces 
(BCI) to predict user’s intended speech information directly from 
the brain activities involved in the speech production mechanism 
[24, 30, 89, 111, 112]. Some have also used multimodal imaging 
systems for speech recognition, focusing mainly on tongue visu-
alization [55]. A recent work developed a wearable interface that 
places fve EMG sensors above the face to capture the neuromuscu-
lar signals for silent speech recognition [60]. Most of these works, 
however, use invasive, impractical, non-portable setup, impeding 
their scalability in real-world scenarios. 

More recently, attempts have been made to enable silent speech 
communication using video-based recognition, referred to as lip 
reading [2, 8, 13, 19, 25, 26, 26–28, 86, 109]. For example, a work 
provided smartphone users access to their phone functionalities 
through silent speech commands [110]. It used the front camera of 
a smartphone to capture the motion of the mouth, then recognized 
the silently spoken commands using deep-learning-based image 
sequence recognition technology. These works suggest that video-
based silent speech input method could be more user friendly and 
appropriate in private and public settings since it can be used with-
out any wearable devices. It has the potential to facilitate input and 
interaction on private devices when the hands are not available, as 
well as on public devices when direct contact is not recommended 
in times like the current COVID-19 situation. It can also help people 
with speech disorder, muteness, and blindness to input and interact 
with computer systems, increasing their access to technologies. 

2.3 Social Acceptance of Technology 
Previous research has explored social acceptability for body-based 
and device-based gestures [97–99, 101], around device input [3], 
head-mounted display (HMD) input [4], and companion drones for 
blind people [14] in lab or public settings. In a recent work, Baier 
and Burmester [16] explored the social acceptability of speech input, 
which revealed that location infuences users’ willingness to use the 
method in public spaces. However, no prior study has explored user 
attitudes and acceptance of using silent speech input. In a diferent 
research, Alallah et al. [5] investigated whether social acceptability 
studies can be conducted on crowdsourced platforms. They showed 
that crowdsourced platforms could be an alternative to conducting 
laboratory-style studies for examining social acceptability. Inspired 
by this work, we conducted our social acceptability study (Study 1) 
via crowdsourcing. 

Prior research also showed that social acceptability has a sig-
nifcant implication for technological acceptance as they are di-
rectly connected to peoples’ preferences on using new technologies 
[63, 114]. To examine the social acceptance of new technologies, 
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researchers conducted studies from users’ perspective and/or view-
ers’ perspective [3, 4, 97–99]. To investigate users’ perspective, 
researchers either provided participants with a frst-hand experi-
ence using a new technology or showed them video clips on how 
the technology could potentially be used [3]. Later, participants 
were asked to consider themselves as users of the technology and 
express their opinion on using it in diferent contexts. While there 
are many social acceptability studies conducted from the users’ 
perspective, less attention has been paid to examine social accep-
tance from viewers’ standpoints. A few studies investigated social 
acceptance from the viewers’ perspective where researchers elicited 
opinions from people watching others using a new technology in 
diferent contexts. Montero et al. [77] showed that considering view-
ers viewpoint is important, especially when using the technology in 
public places, as users’ interactions with the technology might draw 
bystanders’ (or the viewers’) unwanted attention. Consequently, 
viewers’ perspective are explored for wearable e-textile interface 
[93, 94], Augmented Reality (AR) in public space [34], and public 
interfaces (e.g., public performance act) [96]. Additionally, some 
studies considered both the users’ and the viewers’ perspectives 
while evaluating the social acceptance of new technologies, such 
as gestural interaction on mobile devices [77], head-worn devices 
[4, 5, 65, 70], data glass [64], and around device input methods [3]. 
These studies were commonly conducted by examining observers’ 
impression on watching other people interacting with a technol-
ogy — either in a real-world setting or in a video. In this paper, we 
examined the social acceptability of speech and silent speech input 
from both users’ and viewers’ perspectives. 

3 STUDY 1: SOCIAL ACCEPTABILITY 

3.1 Input Modalities 
Researchers have explored a number of voice and non-voice in-
put modalities to interact with mobile devices. For instance, they 
investigated using speech and silent speech input methods that 
range from noticeable to inconspicuous [24, 38, 56, 61, 84, 110, 121]. 
Speech or voice input, which is commercially available on smart-
phones, requires users to make voice commands to send instructions 
to mobile devices. This input modality is explicit and commonly 
draws co-located observers’ attention due to the nature of its input 
visibility – thus can make users feel awkward or uncomfortable 
with the presence of nearby users. On the other hand, silent speech 
input, which recognizes speech without requiring users to make 
acoustic signals, interprets users’ commands on smartphones by 
tracking tongue and lip movements. This input method is more 
subtle than the speech input, and used when acoustics is not an 
option (e.g., speech-impaired people) or it is undesired (e.g., during 
a confdential conversation or communication in public places). 
On one hand, using explicit input modalities can convey clear in-
structions to the devices; however, this form of input might be 
less socially acceptable due to the visibility to co-located people. 
On the other hand, subtle inputs are less explicit; however, co-
located observers might not readily interpret these commands, 
making the interaction more acceptable. Therefore, we frst con-
duct a study to explore the social acceptability of these two input 
modalities. 

Figure 1: Two example videos used in the survey: (a) a user is 
interacting with a mobile device with silent speech input in 
a public place, (b) a video clip showing users lip movements 
and the recognized text, and (c) another video showing a user 
using speech input on a mobile device in a private room. 

3.2 Crowdsourced Study 
As discussed in the related work, researchers explored social accept-
ability for a wide range of input modalities, such as smartphone 
gestures [97, 98, 101], around-device interaction [3], and hand-to-
face input methods [67, 107]. They used two common approaches: 
(i) allowing participants to use the technology in a particular con-
text (e.g., public places) and (ii) showing participants videos of how 
the technique can be used. To collected feedback, participants are 
commonly asked to imagine using it in other contexts (e.g., work-
place) and provide their feedback on a 5-point Likert scale. Due to 
the spread of COVID-19, we were unable to recruit participants to 
run a study in a public place. Thus, we used the second approach 
for our study. 

Crowdsourcing platforms have now become increasingly pop-
ular to conduct HCI user studies [4, 5]. They provide researchers 
with an easy access to large and diverse groups of participants. 
Additionally, these platforms have been considered as cost-efcient 
solutions to run user studies remotely. Though there has been con-
cern about the data quality from crowdsourced studies, researchers 
have taken certain measures to remove outliers, which have been 
almost as efective as laboratory or feld studies [4, 5, 20, 46]. Con-
sequently, we decided to use crowdsourcing platforms to run our 
frst study. 

3.3 Online Survey 
We created an online survey with Qualtrics to collect responses 
from participants. Figure 2 shows a sample of questions from the 
survey. We divided the survey questions into four sections: (i) Demo-
graphics: 14 questions to collect demographic information (e.g., age, 
gender) and prior experience (e.g., experience with smartphones 
and voice input) from participants; (ii) Users’ perspectives: 6 ques-
tions asking users to share their experience of using speech and 
silent speech input methods by considering themselves as users of 
the modalities; (iii) Observers’ perspectives: 6 questions were used 
to explore observers’ perspective, i.e., seeing other people using 
the input modalities and (iv) Overall preference: 6 questions asking 
participants to provide their overall preference of using the input 
modalities on mobile devices. These questions were designed using 
both open-ended questions, single/multiple-choice questions, and 
5-point Likert scale questions. The open-ended questions were used 
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Figure 2: Example of survey questions to collect users feed-
back on using silent speech input (a) in seven locations; and 
(b) in front of six audiences. 

to collect descriptive responses (e.g., justifying their response to a 
question), while the other types of question were used to collect 
their preference/perception of using the input modalities and demo-
graphic information. When designing the questionnaire, we used 
similar questions and location-audience contexts used in previous 
work on social acceptance [3–5, 97, 99]. We also followed many 
steps listed by Boateng et al. [21], including item generation, con-
text validity, pre-testing with a pilot study, item reductions and 
others. 

Researchers explored a number of ways to measure social accept-
abilities of the methods under investigation. One of the commonly 
used methods is to elicit participants’ responses to social acceptabil-
ity questions through the ‘audience-and-location’ axes [3–5, 97], 
where participants are asked to provide their social comfortness of 
using a method in front of diferent audiences and locations. Partici-
pants commonly respond by indicating how comfortable they were 
using the method on a 5-point Likert scale – Extremely comfortable, 
Somewhat comfortable, Neither comfortable nor uncomfortable, 
Somewhat uncomfortable, and Extremely uncomfortable. Therefore, 
we used six audiences (i.e., alone, partner, family, friends, colleagues, 
and strangers) and seven locations (i.e., home, shop, bus or train, 
pavement or sidewalk, pub or restaurant, museum or library, and 
workplace) to explore participants’ impression of using the two 
input methods (i.e., speech and silent speech). As participants might 
not be familiar with a input method, we used a set of video clips 
showing users using the two methods to interact with a mobile 
device in two diferent contexts – in a busy café surrounded by 
strangers and at home when alone. 

3.4 Participants and Study Procedure 
To recruit participants, we posted the survey as a task in Amazon 
Mechanical Turk (AMT), a popular Crowdsourcing platform. All 
AMT users (i.e., workers) could see the task, however, only the 
workers who owned a smartphone and had a minimum of 70% 
approval rate on their previously completed tasks could participate. 
Workers were compensated with USD $1.50 for their time. We 
collected data from 109 crowdsourced participants. 62 of them were 
from the U.S., 6 were from India, 2 were from Brazil, and 1 was from 
Germany. 8 of them were in the age range of 18–24 years, 28 were 
in 25–34 years, 18 were in 35–44 years, 10 were in 45–54 years, 5 
were in 55–64 years, and 2 were 65 years or older. 

The survey was self-paced and the workers were asked to frst 
watch the video clips for an input method, then respond to the ques-
tions related to that method. We also clearly instructed them not to 

Figure 3: Medians of social acceptability for two input meth-
ods from users’ perspective across (a) location, (b) audiences 
and from viewers’ perspective across (c) location and (d) au-
diences, and (e) users’ overall preference for two input meth-
ods. The error bars represent ±1 standard deviation (SD). 

relate comfort with physical comfort (e.g., tiredness), rather focus 
on social and mental aspects of it when providing their responses. 
Similar strategies were applied in previous studies exploring the 
social acceptance of new input modalities [3]. 

As mentioned earlier, data collected from crowdsourcing plat-
forms sometimes raises concerns due to the lack of direct supervi-
sion of the workers. Thus, we used the following criteria to remove 
outliers from our data. (i) Duplicate IP address: we removed any 
data with the same IP address. This outlier removal technique was 
also used in prior studies [4, 5]. (ii) Time threshold: as participants 
were required to watch a set of videos before responding to the 
questions, they had to spend a minimum time to watch the videos 
and read and understand the questions before answering them. Con-
sequently, any responses that were submitted within 3 minutes of 
start were excluded from our analysis. (iii) Incorrect answers: there 
were a few open-ended questions asking participants to provide jus-
tifcations for their responses. Any data with incorrect, incomplete, 
or random answers were rejected. This process excluded in total 38 
participants. Hence, we analyzed the data from 71 participants. 

3.5 Results 
We used non-parametric analyses on the data and, thus, median val-
ues are reported. We also report the efect size (r ) for the Wilcoxon 
signed-rank test. Since r for the Friedman test is calculated for pair-
wise comparison and there is not an agreed method for calculating 
the confdence interval [100], Kendall’s W is most commonly used 
to assess agreement among the raters. Hence, we report W for the 
Friedman test. Both r and W use the Cohen’s interpretation where 
0.1 constitutes a small, 0.3 constitutes a medium, and > 0.5 con-
stitutes a large efect. We aggregated users ratings for each input 
across all the locations and audiences. 

Figure 3 (a) and (b) show the median of social acceptability for 
each input across locations and audiences, respectively, from users’ 
perspective. A Wilcoxon signed-rank test revealed signifcant difer-
ences between the speech and silent speech input methods across 
locations (z = −4.59, p < .05, r = 0.54). However, we found no 
signifcant diference between aggregated values for two input 
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methods across audiences (z = −1.36, p = .17, r = 0.16). Fig-
ure 3 (c) and (d) show the median of social acceptability ratings 
for each input across locations and audiences, respectively, from 
viewers’ perspective. A Wilcoxon signed-rank test showed that 
silent speech input was signifcantly diferent from speech input 
(z = −2.5, p < 0.05, r = 0.30) across locations. However, we did not 
fnd any signifcant diference between two input methods across 
audiences (z = −1.14, p = .26, r = 0.14). We also asked participants 
to provide their preference for using the two input methods to 
interact with mobile devices across locations and audiences. Figure 
3 (e) shows the results. A Wilcoxon signed-rank test revealed signif-
icant diferences between speech and silent speech input methods 
(z = −3.27, p < .05, r = 0.39). We recommend caution in interpret-
ing the “not signifcant” results since they yielded a small efect 
size (r < 0.3). 

3.6 Discussion 
The results suggest that social acceptability for the two input modal-
ities from users’ and viewers’ perspectives were diferent across 
locations as users considered the less noticeable input method (e.g., 
silent speech) as their preferred method to interact with mobile 
devices. Similar fndings were revealed in a prior work [5], where 
they suggested that less noticeable input methods (e.g., ring and 
touchpad) are more socially acceptable than noticeable ones (e.g., 
hand gestures) to interact with an HMD. The results also show that 
participants preferred to use silent speech input over speech input. 
In subjective feedback, participants expressed their interest in using 
silent speech input as it is more subtle and provide a high degree of 
privacy and security than the other method. One participant (male, 
35–44 years) commented, “I would still feel that I have a high level of 
privacy when using silent input“. Another participant (female, 35–44 
years) wrote, “I prefer whisper or silent because it doesn’t bother 
others and can be used in quiet places like libraries”. 

Though the results showed users’ interest in using silent speech 
input, there are several key questions remain unknown that could 
infuence their attitude towards using the method. For instance, 
researchers showed that silent speech input could be prone to high 
error rates [33, 69, 82, 90]. Consequently, silent speech recognition 
accuracy could be a key factor in adopting the method. However, 
little is know of users’ error tolerance level for silent speech input. 
Additionally, silent speech input recognition on mobile devices 
depends primarily on capturing users tongue and lip movements 
via the front camera. Thus, providing appropriate real-time feedback 
on input recognition is critical for the acceptance of the method. 
Therefore, in the next two studies, we explore error tolerance and 
suitable feedback mechanism for silent speech input. 

4 STUDY 2: ERROR TOLERANCE 
Since the survey results revealed that users put much emphasis 
on privacy and security, we conducted a Wizard-of-Oz study to 
investigate whether they are willing to compromise the accuracy 
of an input method for increased privacy and security. 

4.1 Apparatus 
We developed a custom client/server web application with HTML5 
and JavaScript for the Wizard-of-Oz study. The client and server 

communicated with each other using WebRTC4. The client inter-
face looked and felt like the interface depicted in Fig. 1. It was 
launched on a Google Chrome mobile web browser (v71.0.3578.98) 
on a Motorola Moto G5 Plus smartphone (150.2x74x7.7 mm, 155 
g) at 1080x1920 pixels. The server was hosted on a HP Pavilion 15 
laptop computer running on Linux 16.04 at 1920×1080 pixels. The 
server interface was launched on a Google Chrome web browser 
(v74.0.3729.157), which included dedicated buttons for each condi-
tion for the researcher (wizard) to display the spoken and silently 
spoken phrases on the client side. Both devices were connected to 
a fast and reliable Wi-Fi network. There were no network dropouts 
during the study. 

4.2 Participants 
Twelve volunteers from the local university community participated 
in the user study. Their age ranged from 22 to 25 years (M = 24.25, 
SD = 1.48). Four of them identifed as women and eight as men. They 
were all experienced smartphone (at least 5 years of experience, M 
= 7.25, SD = 1.48) and voice assistant (at least one year of experience, 
M = 2.5 years, SD = 0.65) users. Most of them used multiple voice 
assistants, including Alexa, Cortana, Google Assistant, and Siri. 
Two participants used these voice assistants almost every day, eight 
of them used these occasionally, and the remaining two rarely used 
these. 

4.3 Design 
The study used a within-subjects design. The independent variables 
were method and injected error rate and the dependent variables 
were the qualitative metrics. In summary, the design was: 

12 participants × 
2 methods (speech and silent speech, counterbalanced) × 
5 injected error rates (0%, 5%, 10%, 15%, and 20%, randomized) 
× 
12 phrases from the MacKenzie and Soukoref [73] set = 1,440 
phrases, in total. 

4.4 Error Injection 
Injected errors are commonly used in text entry research to study 
the efect of errors on performance and preference [6, 9, 11, 66]. In 
the study, we injected 0%, 5%, 10%, 15%, and 20% misrecognition er-
rors. A misrecognition error occurs when the recognizer incorrectly 
recognizes a word [12], for example, “take a cofee break” (“cofee” 
was replaced with “tofee”). The total number of misrecognition 
errors in a condition was calculated using the following equation: 
(w × e)/100, where w is the total number of words in all presented 
phrases in the condition and e is the target error rate. We injected 
errors at word level since both speech and silent speech methods 
work at either word or phrase level. To inject errors, we randomly 
replaced a word consisting more than three letters with a similar 
sounding word, excluding the frst word. To assure that all partic-
ipants encountered the same errors, we randomly pre-selected a 
subset of phrases from the MacKenzie and Soukoref [73] set, then 
used those with the methods in a counterbalanced order. The error 

4Real-time communication for the web, https://webrtc.org 
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Figure 4: Two participants taking part in the second study at 
a cafeteria. 

injection rates were selected based on the fndings of a prior investi-
gation the reported that user performance tend to drop signifcantly 
when error rate of an input method reaches 20% [12]. 

4.5 Procedure 
We conducted a Wizard-of-Oz study to control the error rate in each 
condition. Before the study, participants were told that the purpose 
of the study was to compare the performance of multiple speech and 
silent speech recognition methods that may vary in accuracy rate. 
The study took place at a campus cafeteria. We picked a public place 
for the study since its purpose was to investigate whether users 
were willing to tolerate more errors for the sake of increased privacy 
and security. Note that the survey results suggested that users are 
likely to be more conscious about their privacy and security when in 
public. Upon arrival, we demonstrated the speech and silent speech 
methods on the smartphone and explained the study procedure to 
each participant. We then collected their consents. The study started 
after that, where participants were instructed to enter short English 
phrases from the MacKenzie and Soukoref [73] set using either 
speech or silent speech at varying injected error rates. The methods 
were counterbalanced and the error rates were randomly injected to 
mitigate any potential learning efects. The interface displayed one 
phrase at a time. Participants were instructed to tap on the screen 
when they were done speaking or silently speaking the phrase. 
They all sat at a table in the cafeteria (Fig. 4). A researcher (the 
wizard) sat at a nearby table with the server interface launched on 
a laptop computer. Upon completion of each phrase, she pressed a 
key to display the recognized phrase and the next phrase on the 
smartphone. Participants were asked to speak or silently speak a 
phrase again when the phrase contained a misrecognized word. 
Upon completion of each condition (method × injected error rate), 
participants completed a short questionnaire that asked them to 
rate their willingness to use the examined methods on a 5-point 
Likert scale. Upon completion of the complete study, they completed 
the NASA-TLX questionnaire [81] to rate the methods’ perceived 
workload. We then held a debrief session to explain the study’s 
actual purpose. A complete study session took about 60 minutes. 

Figure 5: Median willingness to use ratings for speech and 
silent speech with the fve injected error rates on a 5-point 
Likert scale, where where 1 to 5 represented Very unlikely to 
Very likely. The error bars represent ±1 standard deviation 
(SD). 

4.6 Results 
We used non-parametric analyses on the data, thus report median 
values. We also report the efect size r and Kendall’s W for the 
Wilcoxon signed-rank and Friedman tests, respectively (see Section 
3.5). 

4.6.1 Willingness to Use. A Friedman test identifed a signifcant ef-
fect of condition on willingness to use (χ2(9) = 94.04,p < .0001, r = 
0.87). There was a signifcant efect of injected error rate on willing-
ness to use for both the speech (χ2(4) = 38.06, p < .0001) and silent 
speech (χ2(4) = 48.00, p < .0001) methods. A Dunn’s multiple 
comparisons test identifed a signifcant diference in willingness to 
use between the methods with both 10% (z = 2.75,p < .05) and 15% 
(z = 2.83, p < .05) error rates. Fig. 5 illustrates median willingness 
to use for both methods with the fve injected error rates. 

4.6.2 Perceived Workload. A Wilcoxon Signed-Rank test identifed 
a signifcant efect of method on temporal demand (z = −1.1, p < 
.05, r = 0.61) and overall performance (z = −2.24, p < .05, r = 0.65). 
However, no signifcant efect was identifed on mental demand 
(z = −1.93, p = .05, r = 0.55), physical demand (z = −0.93,p = 
.35, r = 0.27), efort (z = −1.45,p = .15, r = 0.42), or the level 
of frustration (z = −0.99, p = .32). Fig. 6 illustrates median Raw 
TLX (RTLX) scores for both methods. We analyzed the subscales 
individually, which is a common modifcation made to NASA-TLX 
[47]. Note that the evidence is inconclusive about whether RTLX is 
more sensitive, less sensitive, or equally sensitive compared to the 
original version, thus Hart [47] left it to the researchers’ discretion. 

4.7 Discussion 
Results revealed that 0% and 5% error rates yielded the highest and 
20% error rate yielded the lowest willingness to use ratings for both 
methods. This is not surprising since prior investigations reported 
that user performance with an input method is the best between 
0% and 5% error rates, slightly drops between 5% and 10% error 
rates, and the worst at 20% error rate [10, 12]. Interestingly, for 
10% and 15% error rates, the willingness to use ratings for speech 
dropped at a higher rate that silent speech (Fig. 5). A post hoc 
analysis failed to identify a signifcant diference between 0–5% and 
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Figure 6: Median RTLX scores of the workload related to 
speech and silent speech methods. The error bars represent 
±1 standard deviation (SD). 

10–15% error rates for silent speech, while these two groups were 
signifcantly diferent for speech. This suggests that users were 
willing to tolerate more errors in silent speech. When asked about 
this during the debrief session, all participants (100%) responded 
that it was mostly due to concerns about their privacy and security. 
They feared that speech will violate their privacy and security in 
public places, especially when they are surrounded by unknown 
people. One participant (female, 22 years) commented, “Sometimes, 
I feel very hesitant to type with my voice publicly because I always 
feel that someone else is listening to me”. In contrast, participants 
felt that silent speech is more private and more secure, thus were 
willing to compromise accuracy to some extent. One participant 
(male, 23 years) commented, “[Silent speech] is very useful for sharing 
important information in public”. 

There was a signifcant diference in temporal demand and over-
all performance for the two methods. Most participants felt that 
silent speech required more time to use than speech (Fig. 6). The 
debrief session revealed that it was because participants silently 
spoke the phrases at a much slower rate than speech assuming that 
it will increase the method’s accuracy (although in reality it had 
no efect since we used a Wizard-of-Oz setup). This also signif-
cantly afected their overall rating of the method. There was no 
signifcant diference in mental demand, physical demand, efort, 
and frustration. However, we recommend caution in interpreting 
these results since in the study participants used the methods while 
seated at a table. Although we did not instruct them on how to 
hold the device, they all held the device with both hands for clear 
view of the interface (Fig. 1) and rested their elbow on the table for 
comfort (Fig. 4). Hence, the results may difer when the methods 
are evaluated in a standing position or while walking. 

5 STUDY 3: VISUAL FEEDBACK 
Providing appropriate feedback on the system status is the key 
usability principle while designing any system. Efcient visual feed-
back helps users to interpret the system status correctly, enabling 
them to access information rapidly and accurately [71]. However, 
designing efective visual feedback for mobile devices is challeng-
ing due to their limited display space. Besides, some participants 
of Study 2 commented that the video feedback method occupies 
much of the smartphone real estate, leaving a little or no space 

for additional input and interaction tasks (Fig. 1). We, therefore, 
conducted a user study to fnd out whether it is feasible to replace 
the commonly used video feedback with a more compact, abstract 
feedback method. 

5.1 Apparatus 
We used the same client/server architecture as the last study, but 
with an updated user interface (Fig. 7). Further, we hosted the app 
on GitHub5 to enable people outside the campus network access the 
client. Six participants used Apple iOS-based smartphones, while 
the remaining six used Android-based smartphones. Ten of them 
used a Google Chrome mobile web browser (> v84), while the 
remaining two used a Safari browser (> v85) to access the client 
app. The wizard used a Microsoft Surface Book 3 (34.3 cm display, 
i7 CPU at 1.90GHz, 16GB RAM) to launch the server interface on a 
Google Chrome web browser (v85.0.4183.102). We did not record 
any network dropouts during the study. 

Figure 7: The two visual feedback methods used in the study: 
(1) video feedback that always displays the video captured by 
the device’s front-facing camera on the screen (left) and (2) 
abstract feedback that displays a grey or a blinking red dot 
at the top right corner of the device based on whether the 
camera can see the lips or not, respectively (right). 

5.2 Feedback Methods 
We implement the following two types of visual feedback: 

• Abstract feedback. The abstract feedback method is de-
signed to provide minimal feedback on silent speech input. 
For this, we used a grey dot at the top right corner of the 
device that turns red and starts blinking when the system 
tracks the lips (similar to the video recording button on most 
mobile device). The dot turns grey and stops blinking when 
the device is unable to see the lips. We use this feedback as 
it ofers a higher level of privacy (does not show users’ face 
or lips) and use minimum screen space on the device. 

• Video feedback. The video feedback method provides de-
tailed information about users’ lip by showing the video 
captured by the device’s front-facing camera. We place the 
video on the screen as constant feedback to users about the 

5GitHub Pages, https://pages.github.com 

https://pages.github.com
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systems status. Though this form of feedback provides pre-
cise information on whether the camera can see users’ lips, 
it consumes a considerable portion of the screen real-estate. 

5.3 Participants 
Twelve participants (6 female, 6 male) aged 23 to 34 years (M = 28.75, 
SD = 2.89) participated in this study. All the participants reported 
being right-handed, using smartphones for the last 8.58 years (SD 
= 2.29), and using at least one voice assistant system for 2.26 years 
(SD = 2.24). None of the participants had prior experience using 
silent speech input. Note that none of the participants participated 
in the previous studies. 

5.4 Error Injection 
We injected errors in this study for two reasons. First, to increase 
the validity of the study since none of the current recognition sys-
tems are 100% accurate. Besides, a fully accurate system would have 
altered some participants about the Wizard-of-Oz setup. Second, to 
investigate whether users perceive the frequency in which errors 
occur diferently with diferent feedback methods. For error injec-
tion, we used the same approach as the previous study. However, 
here we maintained a constant 5% error rate over all sessions and 
injected tracking error rather than misrecognition error. The 5% 
error rate was chosen as it was found to be an acceptable error 
rate in various text entry system [6, 9, 11]. A tracking error occurs 
when the system fails to track the lips because they are out of sight 
or range, or due to technical issues, resulting in missing words in 
the fnal text, for example, “take it to the recycling depot” (“recy-
cling” is removed). We injected tracking error since the purpose of 
visual feedback on a recognition system is usually to inform users 
that it is receiving the tracking signals. Hence, tracking error is 
more appropriate to evaluate the efciency of visual feedback than 
misrecognition error. 

5.5 Design 
The study used a within-subjects design. The independent variables 
was feedback and the dependent variables were the qualitative 
metrics. In summary, the design was: 

12 participants × 
2 feedback methods (video and abstract, counterbalanced) × 
30 phrases from MacKenzie & Soukoref set [73] with 5% 
injected error = 720 phrases, in total. 

5.6 Procedure 
The study was conducted remotely due to the spread of COVID-
19. We scheduled a video call with each participant ahead of time. 
They were told that the purpose of the study was to evaluate two 
diferent types of visual feedback on a working silent speech rec-
ognizer. They were instructed to join the call from a quiet room 
to avoid any interference during the study. A researcher (the wiz-
ard) demonstrated the system and the feedback methods, explained 
tracking error (that the inability to track the lips results in missing 
words in the recognized phrase), collected their consents and de-
mographics, and provided all instructions via the video call. The 
researcher provided the participants with a link to the client app, 
which they accessed on their smartphone using their preferred web 

browser. They were instructed to activate the airplane mode but 
keep the Wi-Fi enabled to avoid any interruptions due to incom-
ing calls. The system displayed one phrase at a time. Participants 
were asked to silently speak the phrase then tap on the screen to 
see the recognition and the next phrase. The researcher displayed 
the recognized phrase and updated the presented phrase using the 
server interface. We did not instruct the participants on how to hold 
the device but informed them that the blinking red dot will turn 
grey when the system cannot track the lips during the graphical 
feedback condition. The researcher observed all interactions with 
the smartphone to manually turn the blinking red dot to grey when 
the front-facing camera is unlikely to capture the lips due to the 
holding posture or angle. Error correction was not required in this 
study. Upon completion of the study, participants completed a short 
questionnaire that asked them to rate various aspect of the two 
feedback methods on a 5-point Likert scale. We then held a debrief 
session to inform the participants about the actual nature of the 
study. The complete study session was recorded using a screen 
recorder. 

5.7 Results 
We used non-parametric analyses on the data, thus report median 
values. We also report the efect size r for the Wilcoxon signed-rank 
test. 

A Wilcoxon signed-rank test identifed a signifcant efect of 
feedback on whether the method provides enough details about 
lip detection (z = −2.06,p < .05, r = 0.6), occludes, interrupts, and 
interferes with the task at hand (z = −2.84, p < .01, , r = 0.82), 
and compromise privacy and security (z = −2.41, p < .05, r = 
0.7). However, there was no signifcant efect on efectiveness (z = 
−0.30,p = .76, r = 0.09), perceived speed (z = −1.34,p = .18, r = 
0.39), perceived accuracy (z = −0.71,p = .48, r = 0.2), or the overall 
preference (z = −1.56, p = .12, r = 0.45). Fig. 8 illustrates median 
ratings of all aspects of the two feedback methods. 

Figure 8: Median ratings of various aspects of the two feed-
back methods on a 5-point Likert scale, where where 1 to 5 
represented Strongly disagree to Strongly agree. The error 
bars represent ±1 standard deviation (SD). 

5.8 Discussion 
Participants found both feedback methods equally efective. They 
found the video feedback signifcantly more informative than 
abstract feedback. This is not surprising since video feedback 
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displayed a real-time video captured by the device’s front-facing 
camera. Interestingly, participants found the abstract feedback to 
be the least intrusive (does not occlude, interrupt, or interfere with 
the task at hand) and most private and secure (does not compro-
mise the user’s privacy and security). Once participant (female, 31 
years) commented, “I have privacy concerns with video feedback, I 
don’t want to see my phone camera on when using apps all the time”. 
Another participant (male, 27 years) wrote, “In my opinion, the video 
feedback mode will always gonna be a concern for my privacy and 
security”. In terms of willingness to use, participants were slightly 
leaning towards the abstract feedback, but this diference was not 
statistically signifcant (medium efect size). This is not necessar-
ily a bad thing since it can be interpreted as, users are impartial 
about the methods, thus using an abstract feedback method is an 
acceptable design choice. Participants found both methods to be 
equally reliable (did not compromise accuracy), but interestingly 
they felt the system with video feedback was slower (statistically 
not signifcant) although both used the same Wizard-of-Oz setup. 
We speculate this is because participants were looking at the video 
while speaking, which increased the mental demand due to infor-
mation processing, giving them the impression that it was slower. 
One limitation of these fndings is the lack of generalizability in 
terms of personality, culture, and ethnic background. Although, the 
study questionnaire used questions from the SUS questionnaire [22] 
and custom questions prepared following the Dix et al. [35] guide-
line, they were not formally validated for the efects of personality, 
culture, and ethnic background. 

6 FINAL REFLECTION 
Our general intuition may provide initial guidance regarding speech 
and silent speech input that the latter is likely to be more acceptable 
than the former due to the nature of the method (it is subtle and less 
visible). However, without empirical data, it is difcult to come to a 
conclusion as users’ perception towards using the method might 
be infuenced by various factors, such as where they are using the 
method, in front of whom they are using it, and their acceptance 
towards the errors committed by the methods. The study results 
confrm that silent speech input is more socially acceptable as it is 
subtle, more secure, and less attention-seeking than speech input. 
Moreover, our results afrm that users are willing to accept more 
recognition errors with silent speech input than speech input. This 
is primarily due to the fact that the method is more private, secure, 
and does not trigger feelings of discomfort. Consequently, users 
expressed their intention to use the method even with a higher 
rate of errors than speech input. However, they also showed their 
preference in limiting the error rate within a reasonable threshold 
(e.g., 5–10%) for both input methods. We also observed that there 
is a possible linkage between perceived privacy and security and 
feedback design for silent speech input. Though video feedback pro-
vides users with detailed information (e.g., whether lip movements 
are captured by the camera), participants expressed their concerns 
about using this feedback method as it may operate in an always-on 
manner, continually tracking and analyzing lip movements from 
the camera. These results further confrm users’ strong intention 

to ensure a high level of privacy and security while inputting on 
mobile devices. 

7 LIMITATIONS AND FUTURE WORK 
In this paper, we took a step toward understanding users’ percep-
tion about using silent speech input method from social acceptance, 
error tolerance, and feedback design perspectives. While an in-the-
wild study would have provided further insights into these issues 
in more realistic usage contexts, due to the COVID-19 pandemic, 
it was not an option available to us. Our results encourage a fur-
ther exploring on these issues in an in-the-wild study. For Study 
2 and 3, we recruited participants from a western country which 
limits the generalizability of the data across diferent culture and 
ethnic background. We acknowledge that a larger and more diverse 
sample would have further afrmed the fndings. Additionally, in 
Study 3, we investigated only one type of abstract feedback (e.g., 
blinking dot) for silent speech input, leaving out other possible ab-
stract feedback (e.g., sinusoid icons) that could also infuence users’ 
impression towards silent speech input. Further investigation is 
needed to identify any diferences or similarities between a wider 
range of feedback methods. Last but not least, our studies were con-
ducted with Wizard-of-Oz mimicking a mobile silent speech input 
method. Hence, we were unable to study other technical factors 
(e.g., silent speech processing delay) that could have afected users’ 
willingness to use the method. It would be interesting to develop 
an app to enable silent speech input on mobile devices to perform a 
longitudinal study examining users’ perception towards the input 
modality. 

8 CONCLUSION 
In this paper, we investigated users’ impression towards using silent 
speech input method on mobile devices from social acceptance, er-
ror tolerance, and feedback design perspectives. In a crowdsourced 
survey, we found out that in general people preferred using silent 
speech input over the traditional speech input. We also observed 
that users were more comfortable using silent speech input in dif-
ferent public and private locations but expressed their concerns 
about input recognition, privacy, and security issues. Consequently, 
we conducted a study examining users’ error tolerance with both 
input methods, where results revealed their willingness to tolerate 
more errors for the sake of privacy and security. In the fnal study 
exploring suitable feedback for silent speech input, we observed 
that users found both a video and an abstract feedback methods 
efective. Yet, they found the latter to be signifcantly more private 
and secure than the commonly used video feedback. We learned 
that designing solutions for silent speech input requires careful 
consideration of various factors and privacy concerns as well as 
people’s tolerance towards using it on mobile devices. 
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