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ABSTRACT
Speaking rate or the speed at which a person speaks is a funda-
mental user characteristic. This work investigates the rate in which
users speak when interacting with speech and silent speech-based
methods. Results revealed that native users speak about 8% faster
than non-native users, but both groups slow down at comparable
rates (34–40%) when interacting with these methods, mostly to
increase their accuracy rates. A follow-up experiment confirms that
slowing down does improve the accuracy of these methods. Both
methods yield the best accuracy rates when speaking at 0.75x of the
actual speaking rate. A post-hoc error analysis revealed that speech
and silent speech methods and native and non-native speakers are
susceptible to different types of errors.
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•Human-centered computing→ Text input; Empirical stud-
ies in interaction design;Natural language interfaces; •Com-
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1 INTRODUCTION
Speech and silent speech-based methods have the potential of
becoming dominant input modalities, especially when the user’s
hands are busy performing other tasks, when in public or noisy
places, and when touching public devices is to be avoided in times
like the current COVID-19 situation. Speech input is a spoken form
of communication that enables users to communicate with a com-
puter system using speech commands, whereas silent speech input
is an unspoken form of communication that enables communica-
tion by visually interpreting the movements of the speaker’s lips.
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Although many identified these as inherently usable and more nat-
ural modes of interaction [55, 61], they are not yet reliable [37].
One major issue that adversely affects these methods’ performance
is inaccurate recognition. To avoid potential speech misrecogni-
tion, users often monitor their behaviors to adjust and optimize
future task performance according to experienced errors or conflicts
[6, 62, 69]. They engage themselves in processes of repairing the
errors by either reformulation, simplification, or hyperenunciation
[32, 38, 40, 42, 50, 57]. However, peoples’ approach to silent speech
input to avoid potential misrecognition is unknown.

Speaking rate is a fundamental user characteristics that can
influence speech recognition performance due to the variation in
acoustic properties of human speech production, such as vowel and
consonant duration, the transition between phoneme and stops,
and distortions in the temporal and spectral domains [23, 24, 72].
Some studies report that faster speaking rates result in higher error
rates [23, 48, 64, 65], whereas some identified slower speaking rates
to be more error prone [24, 66]. This disagreement encourages re-
investigation of the effects of speaking rates on speech recognition
performance. Besides, no such investigations have been conducted
for silent speech recognition. This work explores whether native
and non-native speakers interact differently with speech and silent
speech-based methods, whether speaking rate affects recognition
rates of these methods, the optimal speaking rates for increased
accuracy, and whether the effects of speaking rate are different for
native and non-native speakers.

2 RELATEDWORK
2.1 Speech Interaction
Speech input enables interaction with computer systems via speech
recognition. It converts spoken language to text using acoustic
and language models. Nowadays, speech interfaces can be found
in automobiles [14, 29, 39], smartphones [36], and home assistant
devices [47, 58, 63]. These interfaces use automatic speech recogni-
tion (ASR) to detect and comply with spoken commands. ASR can
potentially improve productivity and user comfort when traditional
input methods, like touch and keyboards, are inefficient, difficult, or
inconvenient to use [26, 61]. Yet, users of speech input are usually
unsatisfied with the quality of interaction due to low recognition
accuracy [20]. To avoid potential errors, users tend to modify their
speaking styles and patterns [32, 38, 40, 42, 50, 57] by shortening
their sentences [34, 57], performing repetition [11, 16], increasing
the volume [13, 22], and hyper-articulating [53]. However, studies
showed that ASR can fail even when these strategies are applied
due to high levels of disfluency, non-canonical pronunciation, ac-
cent, speaking rate, and acoustic and prosodic variability [24]. Luce
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and Pisoni [41] reported that recognition is worse for words that
are phonetically similar to other words than for highly distinctive
words. Shinozaki and Furui [64] found out that longer words have
slightly lower error rates than shorter words. Howes [28] showed
that infrequent words are more likely to be misrecognized. A dif-
ferent research found a correlation between large fluctuations in
the short-term speaking rate and high recognition errors [2]. An-
other work reported that male speakers have significantly higher
recognition error rates than female speakers due to higher rates
of disfluency [1]. Relevantly, misrecognized words were found to
have higher pitch and energy than correctly recognized words [27].
Another study revealed that words with more possible pronuncia-
tions have higher error rates and longer words have slightly lower
error rates [24].

2.2 Effects of Speaking Rate
Different speaking rates can significantly affect speech recogni-
tion performance due to a distorted spectrum caused by variations
in speaking rate [23, 24, 72]. Natural speaking rate depends on
user characteristics like gender, age, accents, and psychological
state. Yuan et al. [71] showed that older people speak slowly com-
pared to young adults, and women talk slower than men. Rao and
Koolagudi [60] reported that people usually speak fast when in a
hurry or angry, and slow when they are tired, sad, or sick. Studies
also showed that non-native speakers talk much slower [25] and
exhibit more variation in speaking rate than native speakers [8].
However, suprasegmental characteristics between native and non-
native speakers in spontaneous speech suggest that non-native
speakers are less variable than native speakers [49], which can
affect recognition rate [56], particularly for non-native speakers
[7, 19, 70]. However, the research community is divided on how
speaking rate affects recognition accuracy. Some associated faster
speech with higher error rates [23, 48, 64, 65], while others found
slow speech to be more error-prone [24, 66].

2.3 Silent Speech Interaction
Video-based silent speech input enables interaction by analyzing
lip movements. It captures lip movements with a camera, then
recognizes the silently spoken words using image processing and
language models. Silent speech input can be effective when speak-
ing audibly could disturb others or disclose confidential information,
to understand elderly and children speech, and to provide people
with speech and motor impairments access to computer systems
[55]. Research found silent speech error-prone due to its depen-
dence on extraneous factors like lighting, skin complexion, posture,
head rotation, and facial expression [12, 33, 51, 54, 67]. In recent
investigations, users reported a higher level of satisfaction using
this method than speech input in some scenarios [55, 68]. However,
very little is known about how speaking rate affects silent speech
recognition and whether these effects are different than those of
speech recognition.

3 EXPERIMENT 1: SPEAKING RATE
This experiment investigates whether native and non-native speak-
ers speak at different rates when interacting with speech and silent
speech-based methods.

3.1 Apparatus
We developed a custom app with Android Studio 3.1.4 (Fig 1). Partic-
ipants used it on their own Android smartphones. Its landing page
included a drop-down menu to select a recording condition (speech,
silent speech) and a Start button to start data collection. The data
collection page displayed the front camera in real-time, random
phrases from a set [44] for participants to speak or silently speak,
and a Record and Stop toggle button to start and stop recording,
respectively. The app stored all videos locally and automatically
logged the duration of each spoken phrase.

3.2 Participants
Twelve volunteers took part in the experiment (Fig. 1). Table 1
presents the demographics of the participants divided into native
and non-native groups. Originally, we wanted to recruit equal num-
ber of native and non-native speakers, but were unable to do so
due to the spread of COVID-19.

3.3 Design and Metrics
The experiment had one within-subjects independent variable:
medium, with three levels: baseline, speech, and silent speech; and one
between-subjects independent variable: speaker, with two levels:
native and non-native. The baseline condition recorded participants’
speaking rates in human-human communication, while the speech
and silent speech conditions recorded their speaking rates with
a speech and silent speech recognizer, respectively, through the
mobile app. We used a Wizard-of-Oz setup, that is, the app did not
include actual recognizers but pretended to accurately recognize
all spoken and silently spoken phrases as long as the participant’s
face was visible to the app. For the baseline condition, we extracted
one minute of speech from the conversations we had with the par-
ticipants during the app installation and demonstration process.
In the speech and silent speech conditions, participants spoke and
silently spoke 30 phrases from a set [44], respectively (720 phrases,
in total). The dependent variables were:

• Time per phoneme (TPP) is the average time participants
took to utter a phoneme (in milliseconds), calculated using
the following equation: TPP = time per phrase

total phoneme in phrase . Total
phoneme in a recognized phrase was counted with the Pro-
nouncing API1 that uses the Carnegie Mellon University
(CMU) Pronouncing Dictionary2 to identify phonemes.

• Actual words per minute (A-WPM) is the most commonly
used metrics for calculating speaking rate [3, 15]. It measures
the average number of actual words spoken in a minute.
This metric is different from the traditional WPM metric
that considers five characters as one word regardless of the
actual number of words in a phrase [5]. A-WPM is calculated
using the following equation:WPM = total words

number of minutes .

3.4 Procedure
The experiment was conducted remotely via Zoom due to COVID-
19. We scheduled individual video calls with each participant. They

1Pronouncing API: https://pronouncing.readthedocs.io/en/latest/pronouncing.html#
pronouncing.phones_for_word
2CMU Pronouncing Dictionary: http://www.speech.cs.cmu.edu/cgi-bin/cmudict

https://pronouncing.readthedocs.io/en/latest/pronouncing.html#pronouncing.phones_for_word
https://pronouncing.readthedocs.io/en/latest/pronouncing.html#pronouncing.phones_for_word
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(a) (b)

Figure 1: (a) Screenshots of the custom app used in the experiment: the landing page (left) and the data collection page (right).
(b) Four volunteers participating in the first experiment through a teleconferencing system.

Table 1: Demographics of the participants.

Native (N = 4) Non-native (N = 8)
Age 22–54 years (M = 32.2, SD = 14.7) 19–33 years (M = 25.8, SD = 4.7)
Gender 1 female, 3 male 4 female, 4 male
Experience with speech 1–8 years (M = 3.5, SD = 3.3) 1–4 years (M = 1.2, SD = 0.8)
Experience with silent speech None None

were instructed to join the call from a quiet room to avoid any
interruptions during the experiment. In the call, we first explained
how speech and video-based silent speech recognition systems
work, then demonstrated the custom app and collected their in-
formed consents and demographics using electronic forms. We then
shared the app installation file (APK) with them and guided them
through the installation process on their smartphones. The data
collection session started after that, where the app displayed one
phrase at a time. Participants were instructed to press the Record
button, speak or silently speak the presented phrase, then pressed
the Stop button. They were told that the system will process the
spoken or silently spoken phrase when they press the Stop button.
If the phrase is correctly recognized, it will display the next phrase,
otherwise will ask them to re-speak the same phrase. However, in
reality, the app did not include a recognizer, instead pretended to
correctly recognize all spoken and silently spoken phrases. The
Zoom sessions were recorded to extract one minute of speech for
the baseline condition (Section 3.3). Participants were not informed
of this during the experiment to avoid a potential Hawthorne effect
[43]. Upon completion, participants shared all locally stored video
clips and log files with us by uploading those to a cloud storage.
They then took part in an interview about their experience with
the app. Finally, we debriefed them about the Wizard-of-Oz setup
and informed them that clips from the demo and installation Zoom
session will be used to measure their natural speaking rates.

4 RESULTS
A complete experiment took 45–60 minutes. A Shapiro-Wilk test
revealed that the response variable residuals were normally dis-
tributed. A Mauchly’s test indicated that the variances of popula-
tions were equal. Hence, we used a one-way repeated-measures

ANOVA to study the effects ofmedium, a one-way between-subjects
ANOVA for the effects of speaker, and a mixed-design ANOVA for
the medium × speaker interaction effects [4].

4.1 Time per Phoneme (TPP)
AnANOVA identified a significant effect ofmedium (F2,11 = 697.59,
p < .0001) on TPP. On average, participants took 107.5 ms (SD
= 4.6), 161.6 ms. (SD = 5.5), and 178.7 ms (SD = 8.8) to utter a
phoneme in the baseline, speech, and silent speech conditions, re-
spectively. An ANOVA also identified a significant effect of speaker
(F1,10 = 1212.35,p < .0001) on TPP. On average, native participants
took 161.26 ms (SD = 10.78) to utter a phoneme, while non-native
participants took 173.14 ms (SD = 13.36). There was also a medium
× speaker interaction effect (F1,20 = 66.02,p < .0001). Fig. 2 (a)
presents average TPP for native and non-native speakers with the
three mediums.

4.2 Actual Words per Minute (A-WPM)
AnANOVA identified a significant effect ofmedium (F2,11 = 1783.18,
p < .0001) on A-WPM. On average, participants yielded 109.7 (SD
= 4.6), 89.5 (SD = 5.2), and 74.8 (SD = 3.6) A-WPM in the baseline,
speech, and silent speech conditions, respectively. An ANOVA also
identified a significant effect of speaker (F1,10 = 1467.96,p = .0001)
on A-WPM. On average, native participants yielded 87.49 A-WPM
(SD = 9.04), while non-native participants yielded 80.26 A-WPM
(SD = 8.42). There was also a medium × speaker interaction effect
(F1,20 = 17.18,p < .0001). Fig. 2 (b) presents average A-WPM for
native and non-native speakers with the three mediums.
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Figure 2: (a) Average time per phoneme (TPP) and (b) average actual words per minute (A-WPM) for native and non-native
speakers with the three investigated mediums. The values inside the brackets are standard deviations (SD). The error bars
represent ±1 SD.

5 DISCUSSION
Both native and non-native speakers spoke at much slower rates
compared to their usual speaking rates while using the speech
and the silent speech recognizers. On average, participants took
33.4% and 39.8% extra time to utter a phoneme with speech and
silent speech, respectively. Likewise, A-WPM dropped by 22.5%
and 46.6%, respectively. Consequently, a post-hoc Tukey-Kramer
multiple-comparison test identified two distinct groups: {baseline}
and {speech, silent speech}. The post-experiment interview revealed
that participants spoke slowly while using these methods think-
ing that it would increase their recognition rates. However, there
was no actual effects on phrase recognition as the Wizard-of-Oz
approach pretended to correctly recognize all spoken or silently
spoken phrases. Since all participants were experienced users of
various voice assistant systems, it is likely that the unreliability of
these systems encouraged them to reduce the rate of their speech.
Relevantly, a participant (female, 27 years, non-native) said, “It
[speaking slowly] is mostly due to lack of proficiency and different
accent. I always try to speak slowly and try to match accent to make
the speech assistant understand me which is sometimes awkward and
irritating”. Surprisingly, they spoke at a much slower rate when
using a silent speech recognizer compared to when using a speech
recognizer. This could be either because participants never used
a silent speech-based method before or the fact that video-based
silent speech recognizers detect speech based on lip movements
rather than the sound produced by the speakers (Section 3.4), giv-
ing them the impression that the method requires extra finesse for
an acceptable accuracy rate. Post-experiment interview revealed
that participants overemphasized their lip movements during silent
speech to “aid” the recognition process.

Results revealed that non-native speaker spoke at a slower rate
than native speakers (about 7% slower TPP). This is not surprising
since many studies found out that average speaking rate for non-
native speakers is slower than for native speakers as "a general
lack of proficiency and experience can result in slower speaking rates"
[9, 17, 18, 21, 25]. However, both native and non-native speakers
slowed down at comparable rates when interacting with speech
(∼34% slower TPP) and silent speech (∼40% slower TPP) recognizers.
This finding is interesting as it suggests that these slower speaking
rates were not caused by the lack of proficiency or experience but
due to the speakers’ skepticism about the reliability of the state-
of-the-art speech and silent speech recognizers. Based on these

findings, we recommend evaluating new speech and silent speech
recognizers with both native and non-native speakers of the target
language, and report the results of the two groups separately due to
their significantly different speaking rates. The fact that users slow
down when interacting with speech and silent speech recognizers
can also be exploited for improved performance.

We were unable to study any potential effects of recognition
error on speaking rate since the Wizard-of-Oz setup collected data
without any errors. However, users are likely to adjust their in-
teraction behavior when interacting with an error-prone system,
like observed in other recognition systems [6]. Another limitation
of the study is using different scenarios in the baseline and the
speech conditions. Speaking rate for the baseline was calculated
in continuous computer-mediated communication, while the same
for the speech and the silent speech were calculated from manually
segmented phrases. It is unknown whether the additional latency
introduced by the manual segmentation affected the speaking rate
in any way. It is also unclear if the speaking rates are different
for computer-mediated and face-to-face communications, although
prior works reported other behavioral changes [35].

6 EXPERIMENT 2: EFFECTS OF SPEAKING
RATE

This experiment studied whether speaking rate affects recognition
rates of state-of-the-art speech and silent speech recognizers.

6.1 Participants and Design
We invited the participants of the previous experiment (Section 3.2)
to take part in this experiment. The experiment had two within-
subjects independent variable: medium and speaking rate. The for-
mer had two levels: speech and silent speech, and the latter had
seven levels: 0.25x, 0.5x, 0.75x, 1x, 1.25x, 1.5x, and 1.75x of the ac-
tual speaking rates of the participants. These rates were selected
based on YouTube’s playback speed scale, ranging from quarter
speed (0.25x) to double speed (2x). Among these, we selected the
actual rate (1x), the top three slower rates (0.25x, 0.5x, 0.75x) and
the top three faster rates (1.25x, 1.5x, 1.75x), resulting in seven rates
in total. The experiment had one between-subjects independent
variable: speaker, with two levels: native and non-native. Partici-
pants spoke 30 phrases from the respective model’s training dataset
[54, see A.1 & A.5], which were post-processed to achieve the seven
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speaking rates, resulting in 30 phrases × 2 mediums × 7 speaking
rates = 420 phrases per participant. The dependent variable was
the following performance metric:

• Word accuracy (WA) measures the total number of words
accurately recognized from the total number of spokenwords.
It is calculated using the following equation, where S is the
number of substitutions, D is the number of deletions, I is
the number of insertions, N is the number of words in the
ground truth:WA = 1 − (S+D+I )

N .

6.2 Apparatus and Procedure
We modified the custom app used the previous experiment to re-
place the phrases [44] with phrases from the examined speech
and silent speech recognition models’ training datasets. We also
included a new condition in the app, where participants are in-
structed to read the presented phrases. Recorded video clips were
time-expanded for the slower rates and time-compressed for the
faster rates using the FFmpeg 3 platform. All clips were then pro-
cessed using two state-of-the-art pre-trained recognition models
for speech and silent speech: Kaldi (Api.ai) [59] and LipType [54],
respectively.

The experiment used the same procedure as the first experiment
except for the demonstration and the post-experiment debrief and
interview. The custom app displayed one phrase at a time, and
participants were instructed to read it at a rate in which they would
usually speak with another person. Note that, despite the different
speaking rates, each participant spoke exactly the same number of
words in each condition.

7 RESULTS
A complete experiment took about 30 minutes. A Shapiro-Wilk
test revealed that the response variable residuals were normally
distributed. A Mauchly’s test indicated that the variances of popu-
lations were equal. Hence, we used a two-way repeated-measures
ANOVA to study the effects ofmedium and speaking rate, a one-way
between-subjects ANOVA to to study the effects of speaker, and a
mixed-design ANOVA to study the interaction effects [4].

7.1 Word Accuracy (WA)
An ANOVA identified a significant effect of medium (F1,11 =
64769.13,p < .0001) and speaking rate (F6,66 = 697.21,p < .0001)
on WA. The medium × speaking rate interaction effect was also sta-
tistically significant (F6,66 = 33009.02,p < .0001). Fig. 3 illustrates
the average WA of the speech and the silent speech recognition
methods with the seven speaking rates. An ANOVA also identified a
significant effect of speaker (F1,10 = 805.74,p < .0001). The speaker
× medium (F1,10 = 64.54,p < .0001) and the speaker × speaking
rate × medium (F6,60 = 543.30,p < .0001) interaction effects were
also statistically significant. Fig. 4 illustrates the average WA of the
speech and the silent speech recognition methods for native and
non-native speakers with the seven examined speaking rates.

3AComplete, Cross-Platform Solution to Record, Convert and Stream Audio and Video:
https://www.ffmpeg.org

Table 2: Distribution of insertion, deletion, and substitution
errors in the phrases recognized by the speech and the silent
speech recognizers.

Speech Silent Speech
All Native Non-Native All Native Non-Native

Insertion 38% 12% 29% 2% 4% 22%
Deletion 21% 41% 37% 27% 30% 21%
Substitution 41% 47% 34% 71% 66% 57%

7.2 Error Analysis
We conducted a post-hoc analysis of the recognized phrases at the
usual speaking rate (1x) to find out the distribution of insertion
errors (extra words are incorrectly inserted), deletion errors (correct
words are incorrectly omitted), and substitution errors (words are
substituted with incorrect words) [10]. Table 2 presents the results.

8 DISCUSSION
Both speech and silent speech methods performed well with regular
(1x) speaking rate. On average, speech and silent speech methods
yielded 82% (SD = 4.6) and 80% (SD = 3.5) WA, respectively, with
regular speaking rate. The effects of speaking rate was different for
native and non-native speakers. At regular rate, speech and silent
speech methods were 9.9% and 7.5% more accurate, respectively, for
native speakers than non-native speakers. However, for both native
and non-native speakers, the performance of the speech recog-
nition method dropped substantially with speaking rates lower
than 0.5x and higher than 1.25x (Fig. 4). A post-hoc Tukey-Kramer
multiple-comparison test revealed that 0.75x speaking rate was
significantly more accurate than the other speaking rates. Likewise,
the performance of the silent speech recognition method dropped
substantially with rates lower than 0.75x and higher than 1.25x
for both native and non-native speakers (Fig. 4). Like speech, a
post-hoc Tukey-Kramer multiple-comparison test identified 0.75x
as significantly more accurate than the other examined speaking
rates. These findings suggest that speaking slightly slower than
usual can indeed increase the reliability of speech and silent speech
recognizers, regardless of the speaker’s proficiency and experience
in English. Results also suggest that 0.5–1.25x is the optimal range
for speech and 0.75–1.25x is the optimal range for silent speech
for higher accuracy rates. We speculate, this is due to the fact that
much faster speaking rates can cause frequent and stronger pro-
nunciation changes while much slower speaking rates tend to add
unnecessary pauses between phonemes [45]. The average natural
speaking rate was slower in this experiment than the first exper-
iment since, here, participants read the phrases, which is slower
than speaking [30, 31, 46, 52].

Error analysis revealed that silent speech had 94.7% lower in-
sertion errors than speech. We speculate, this is because ambient
noise in the audio affected the recognition of the speech method.
Silent speech, in contrast, uses visual information for recognition,
thus was not affected by background noise. Interestingly, speech
committed 11% higher deletion errors and 38% higher substitution
errors for native speakers than non-native speakers. This could be
because faster rates resulted in overlaps between the words, mak-
ing it difficult to segment them. Silent speech also resulted in 81%

https://www.ffmpeg.org
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Figure 3: Average word accuracy rates (%) of the speech and the silent speech recognition methods with the seven examined
speaking rates. The values inside the brackets are standard deviations (SD). The error bars represent ±1 SD.

Figure 4: Average word accuracy rates (%) of the speech and silent speech recognition methods for native and non-native
speakers with the seven examined speaking rates. The values inside the brackets are standard deviations (SD). The error bars
represent ±1 SD.

lower insertion errors, 42% higher deletion errors, and 16% higher
substitution errors than non-native speakers, presumably for the
same reasons. Silent speech had 73.1% higher substitution errors
than speech, which could be due to the difficulty in distinguishing
between different homophones with visual information as multiple
characters can produce the same lip movement sequence, such as
for the letters ‘p’ and ‘b’.

9 CONCLUSION
The findings of this work highlight the importance of considering
speaking rate in speech and silent speech-based interfaces. While
designing interfaces for these methods, the recognition algorithms
must be optimized for varying speaking rates and the characteristics
of native and non-native speakers. Error analysis presented in this
work could be used to identify areas that require extra effort to
increase the respective method’s accuracy rates. The findings could
also provide guidance to users on improving speech and silent
speech input performance.
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