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Fig. 1. A menu selection scenario with the proposed method. To select “Broccoli”, the user starts scanning
the horizontal menu from the le�. The system locks the cursor on the first item when the gaze is within 10
pixels of the item. The user silently speaks the command “Select” to expand the current menu (display the
sub-menu). The user silently speaks “Right” to move the cursor horizontally to the next item. The user locates
the target, silently speaks “Bo�om” to move the cursor to the target below the current item, then silently
speaks “Select” to select the target.

We investigate silent speech as a hands-free selection method in eye-gaze pointing. We �rst propose a
stripped-down image-based model that can recognize a small number of silent commands almost as fast as
state-of-the-art speech recognition models. We then compare it with other hands-free selection methods (dwell,
speech) in a Fitts’ law study. Results revealed that speech and silent speech are comparable in throughput
and selection time, but the latter is signi�cantly more accurate than the other methods. A follow-up study
revealed that target selection around the center of a display is signi�cantly faster and more accurate, while
around the top corners and the bottom are slower and error prone. We then present a method for selecting
menu items with eye-gaze and silent speech. A study revealed that it signi�cantly reduces task completion
time and error rate.
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1 INTRODUCTION

Eye-gaze-based interaction is a promising modality for faster and seamless hands-free (also known
as contactless or touchless) interaction [108]. It enables people with limited motor skills to interact
with computer systemswithout using the hands [5, 16, 26, 57, 71]. It is also bene�cial in Situationally-
Induced Impairments and Disabilities (SIID) [104, 125], when the hands are incapacitated due to
reasons such as performing a secondary task, minor injuries, or unavailability of a keyboard [101].
Hands-free interaction is also of a particular interest in situations when touching public devices is
to be avoided to prevent the spread of an infectious disease [53].

Eye tracking technologies measure a person’s eye movements and positions to understand where
the person is looking at any given time. In the past, eye tracking required expensive, often non-
portable extramural devices, which were slow and error prone [69, 127]. Recent developments have
made eye tracking more a�ordable, portable, and reliable. Modern algorithms can track eyes using
webcams almost as fast and accurately as commercial tracking technologies [69, 106, 126]. The most
common application of eye tracking is to direct control a mouse cursor using eye movements [127].
While the idea of performing tasks simply by looking at the interface is empowering, eye tracking
has yet to become a pervasive technology due to the “Midas Touch” problem [55], which refers
to the classic eye tracking problem where the system cannot distinguish between users simply
scanning the items versus their intention to select them, resulting in unwanted selections wherever
the user looks, making the system unusable. One solution to this problem is to use a di�erent action
to activate selection. The most commonly used selection method with eye tracking is dwell, where
users look at a target for 100–3,000 ms [42] to select it. It is, however, di�cult to pick the most
e�ective dwell time for a population since a short dwell time makes the system faster but increases
false positives, while a long dwell time makes the system slower and causes users physical and
cognitive stress [14, 42]. Many alternatives have been proposed to substitute dwell, including head
and gaze gestures, blinking, voluntary facial muscle activation, brain signals, and foot pedals. Most
of these approaches either use external, invasive hardware that are not yet scalable in practical
situations or exploit unnatural behaviors that can cause users irritation and fatigue [56]. Speech is
promising but not reliable in noisy places (e.g., when listening to music). Users are also hesitant to
use speech when in public places (e.g., in a library) [30–32, 99]. Besides, speech does not work well
with people with severe speech disorders since it relies on the sound produced by the users [5, 16].

In this work, we investigate silent speech as an alternative selection method for eye-gaze pointing.
Silent speech is an image-based language processing method that interprets users’ lip movements
into text [89]. We envision several bene�ts of using silent speech commands as a selection method.
First, it does not require the use of external hardware since both eye tracking and silent speech
recognition can occur through the same webcam. Second, silent speech does not rely on acoustic
features, thus can be used in noisy places or in places where people do not want to be disturbed
[90]. Although outside the scope of this work, silent speech can also accommodate people with
speech disorders. The contribution of our work is three-fold. First, we propose a stripped-down
image-based model that can recognize a small number of silent commands almost as fast as state-
of-the-art speech recognition models. Second, we design a silent speech-based selection method
and compare it with other hands-free selection methods, namely dwell and speech, in a Fitts’ law
experiment. We follow-up on this by conducting another study investigating the most e�ective
screen areas for eye-gaze pointing in terms of throughput, pointing time, and error rate. Finally,
we design a silent speech-based menu selection method for eye-gaze pointing and evaluate it in an
empirical study.
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2 RELATED WORK

There is a rich body of work on selection methods for gaze pointing. Most of these works, however,
explore manual approaches that require the use of the hands, particularly mid-air gesture (e.g.,
[18, 97, 102]) and physical keys, buttons, and controllers (e.g., [70, 71, 83, 121]). In this section, we
only cover hands-free selection methods that are accessible to people with limited motor skills.

2.1 Hands-Free Selection Methods

Dwell is the most commonly used hands-free selection method in gaze pointing. It enables users to
look at a target for a predetermined period of time to trigger selection [42]. This method is popular
due to its simplicity and because it does not require the use of additional sensors like microphones,
depth cameras, or motion sensors. However, it is di�cult to maintain a sensible balance between
speed and accuracy when selecting a dwell time. A short dwell time makes a system faster but
increases the chance of unwanted selections, while a long dwell time makes the system slower and
can cause users physical and cognitive stress [14, 42]. To address this, several works have enabled
users to adjust the dwell time [76] or automatically adjusted dwell time based on user experience
[82, 128]. While these approaches improved the performance of dwell, it remains a time-consuming
and error prone selection method in gaze pointing.
Many alternatives have been proposed to substitute dwell. Drewes and Schmidt [29] explored

gaze gestures with eye tracking, where users performed speci�c eye movements for target selection.
Studies suggested users can perform complex gaze gestures intentionally [29, 50]. A follow-up
study showed that gaze gestures can enable people with motor impairments to play online games
[54]. Some have used speci�c types of gaze gestures (e.g., reverse crossing [34] and single gaze
gestures [84]) and blinking [8] for target selection. However, performing intentional gaze gestures
and blinking are unnatural [56], thus can cause users irritation and fatigue. Several works, in
contrast, studied target selection through voluntary facial muscle activation [77, 117], brain signals
[47], and foot pedals [79]. These methods use external and invasive hardware, thus not yet scalable
in practical situations. Some have also attempted head gestures for target selection [79, 109, 110],
which performed well in short-term use, but can cause fatigue in extended use. Many have combined
gaze with speech, which is potentially a more natural and e�cient mode of interaction [93, 112].
These works either use a single command to con�rm selection [15] or multiple commands to
facilitate both pointing and selection [81, 107]. Speech is promising but unreliable in noisy places
and users are often hesitant to use speech in public places [30–32, 99]. Besides, speech does not
work well with people with severe speech disorder [5, 16].

2.2 Gaze-Based Menu Selection

Not much work has focused on gaze-based menu selection methods. Menu selection is di�erent
than individual target selection (e.g., virtual keys, buttons, or links) since the former involves the
selection of a sequence of horizontal and vertical targets. Error in one selection task results in an
incorrect output, forcing the user to correct the mistake, then re-perform all tasks in the sequence.
Menu selection, thus, has a much higher error correction overhead. Almost all gaze-based menu
selection methods use a “zooming” approach that dynamically increases the size of a potential
target to facilitate precise selection [12, 80, 111, 129]. These methods, however, do not provide an
e�ective mechanism for controlling the zooming behavior, which can cause frustration when the
method does not behave as expected. Expanding the menu items can also occlude the content in the
background, causing inconvenience. Murata and Karwowski [83] positions the cursor at the center
of a target by suppressing cursor movements caused by involuntary eye movements. Kammerer
et al. [61] enable users to select a target my making a “click” sound when the cursor is over it.
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Murata and Karwowski [83] enable users to speak the items in a menu to select them. Some also
explored di�erent menu designs (e.g., radial, semi-circular, etc.) for gaze pointing [61, 119].

2.3 Interaction with Silent Speech

Silent speech has not been well explored in user interfaces, presumably due to technological
limitations, as the existing recognition models use expensive, invasive, or non-portable hardware,
including electromagnetic articulography (EMA) [33, 38, 44], real-time magnetic resonance imaging
(rtMRI) [91], electroencephalogram (EEG) [96], electromyography (EMG) [58–60, 62, 75, 105, 123],
ultrasound imaging [27, 28, 35, 38, 44, 48, 49, 66], vibrational sensors of glottal activity [86, 94,
100, 118], speech motor cortex implants [10], and non-audible murmur microphones [45, 46, 85].
Recently, there have been some attempts to recognize speech from videos of mouth and tongue
movements [3, 6, 9, 13, 20, 21, 21–23, 89, 95, 115, 116]. But these models are slow (takes ∼5 seconds
to recognize one word) and error prone (4–47% error rate) [89]. To the best of our knowledge, none
have explored the possibility of using silent speech with gaze pointing.
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Fig. 2. The architecture of the proposed silent command recognition model. It pre-processes a sequence of )
frames for mouth-centered cropped images to extract key frames. The key frames are fed to a 1-layer 3D CNN,
followed by a 34-layer 2D SE-ResNet for spatiotemporal feature extraction. The features are then processed
by two Bi-GRUs, a linear layer, and a so�max. Finally, the so�max output is decoded with a le�-to-right
beam search using the Stanford-CTC decoder.

3 A MODEL FOR SILENT COMMAND RECOGNITION

We customized an existing silent speech recognition model LipType [89] to recognize silent com-
mands. We did not use an o�-the-shelf recognizer since they are optimized for recognizing phrases,
thus trained on large corpora (≥1,000 phrases [25]). This increases the variability and ambiguity
in lip movements (similar movements for di�erent characters), which are disambiguated in post-
processing using language models [9, 89]. This a�ects both speed and accuracy. State-of-the-art
silent speech recognition models can take up to 5,000 ms to recognize one word with accuracy rates
between 53–96% [89]. Since voice assistants usually use a small number of words as commands,
we used a smaller set of words that can be distinguished based on mouth aspect ratios (MAR)
and scraped o� all word and phrase-level language models. The proposed model consists of three
sub-modules: a key frames extraction frontend that takes a sequence of video frames and extracts
key frames to create a compact representation, a spatiotemporal feature extractionmodule that takes
a sequence of key frames and outputs one feature vector per frame, and a sequence modeling module
that inputs the sequence of per-frame feature vectors to recognize a keyword. The model is capable
of mapping variable-length video sequences to text sequences. Fig. 2 illustrates the architecture of
the model.
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Module 1: Key frames extraction. This module crops oneF :100 × ℎ:50 pixels mouth-centered
image per video frame to extract key frames. The module pre-processes each video clip with the
DLib face detector [67] and the iBug face landmark predictor [103] with 68 facial landmarks (!)
and Kalman �ltering (Fig. 3, left). Then, mouth-centered cropped images are extracted by applying
a�ne transformations. These images are used to measure MAR by dividing the distance between
the upper and the lower lips (ℎ) with the distance between the left and the right corners of the
mouth (F ) (Eq. 1). All frames with a MAR greater than 20 are considered as key frames and the
remaining frames are discarded to reduce computation time. This threshold was picked based on
an ablation study that revealed that a MAR greater than 20 is su�cient to distinguish between
words in a corpus with 10 words (Fig. 3, right).

"�' =

∥!61 − !56∥ + ∥!60 − !57∥ + ∥!59 − !58∥

2 ∗ ∥!44 − !50∥
(1)

Module 2: Spatiotemporal feature extraction. This module passes the extracted key frames to
a 3D-CNN with a kernel dimension of ) :5 ×, :7 × � :7, followed by Batch Normalization (BN)
[52] and Recti�ed Linear Units (ReLU) [4]. Then, the extracted feature maps are passed through a
34-layer 2D SE-ResNet to gradually decrease the spatial dimensions with depth until the feature
becomes a single dimensional tensor per time step.

Module 3: Sequence modeling. This module processes the extracted features using two Bidirec-
tional Gated Recurrent Units (Bi-GRUs) [19]. Each time-step of the GRU output is processed by
a linear layer and a softmax layer over the vocabulary, and an end-to-end model is trained with
connectionist temporal classi�cation (CTC) loss [41]. The output is then decoded with a left-to-right
beam search [24] using the Stanford-CTC decoder [72] to recognize spoken keywords.

M
A

R

Time Frames

Fig. 3. From le�, lip landmarks detected by DLib and iBug [67], and average mouth aspect ratios (MAR) of
the ten keywords.

3.1 Training and Implementation

We trained the model for ten keywords: Press, Select, Left, Right, Top, Bottom, Reverse, Forward, Open,
Close, with the data collected from 20 participants: 9 female, 11 male, average age 26.95 years (SD =
3.03). The data collection process occurred remotely. Participants sat in front of their computers
and silently spoke each keyword in a random order for 50 times (20 participants × 10 keywords ×
50 repetitions = 10,000 samples). We enabled them to use the embedded cameras to increase the
variability of the dataset. They were instructed to take 1–2 minutes breaks between the words and
∼3 seconds breaks between the repetitions to reduce the e�ects of fatigue. A researcher guided them
and observed the whole process via a videotelephony system. Before training, we pre-processed the
data by applying a horizontally mirrored transformation, color space augmentations, and random
cropping on the cropped mouth images, resulting in 42,981 samples in total (4,290/keyword). We
augmented the dataset with simple transformations to reduce over�tting. The number of frames
was �xed to 75. Longer image sequences were truncated and shorter sequences were padded with
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Table 1. Average recognition time (seconds) and accuracy rates (%) for the investigatedmodels. “Sp.” represents
“Speech” and “Com.” represents “Command”.

Unit Method Press Select Left Right Top Bottom Reverse Forward Open Close

T
im

e

Google Sp. 1.73 1.64 1.65 1.54 1.69 1.82 1.82 1.68 1.65 1.61
Kaldi Sp. 2.27 2.17 2.30 2.19 2.10 2.02 2.08 2.13 2.33 2.14
Silent Com. 1.99 1.96 2.04 1.90 2.09 2.03 1.88 1.76 2.04 1.96
LipType 3.09 3.28 2.95 3.24 3.02 3.09 3.18 3.15 3.09 3.38

A
cc
u
ra
cy Google Sp. 97.92 97.71 98.11 98.36 98.18 97.42 98.15 98.53 97.97 97.82

Kaldi Sp. 88.05 88.65 90.19 87.48 89.04 88.41 85.83 88.04 89.62 88.02
Silent Com. 77.12 79.36 73.44 72.48 72.37 71.91 71.84 72.76 79.52 76.18
LipType 87.51 87.55 85.89 86.86 88.57 89.06 87.31 88.24 86.04 88.86

zeros. We applied a channel-wise dropout [114] of 0.3. The model was trained end-to-end by the
Adam optimizer [68] for 60 epochs with a batch size of 50. The learning rate was set to 10

−3. The
network was implemented on the Keras deep-learning platform with TensorFlow [2] as the backend.
Wll models were trained and tested on an NVIDIA GeForce 1080Ti GPU board. The source code1

and the training dataset2 are freely available to download.

3.2 Performance Evaluation

We conducted a study to compare the performance of the proposed silent command model with
a state-of-the-art speech (Google Speech-to-Text API [40], Kaldi (Api.ai) [98]) and silent speech
(LipType [89]) recognition models to determine if it is reliable enough as a selection method in
gaze-based interfaces. Twelve volunteers participated in the study (M = 27.67 years, SD = 2.77).
Six of them identi�ed themselves as female and six as male. None of them took part in the data
collection process. In the study, participants either spoke or silently spoke (counterbalanced) each
keyword for 12 times in a random order (12 participants × 2 methods × 2 models × 10 keywords
× 12 repetitions = 5,760 samples). A custom web application, developed with HTML5, CSS, PHP,
and JavaScript, presented one keyword at a time, processed and displayed the recognized word
on the screen, then presented the next keyword. The application was loaded on a Chrome web
browser v92.0.4515.131 running on a MacBook Pro 16′′ laptop with 2.6 GHz Intel Core i7 processor,
16 GB RAM, 3072×1920 at 226 ppi. Its built-in FaceTime HD webcam (1.2 megapixel with 1,280×720
pixel resolution) was used to track lip movements. The application automatically calculated and
recorded recognition time (seconds): the average time to recognize a word and accuracy rate (%):
the average percentage of words accurately recognized by a model.

3.2.1 Results. On average, Google Speech-to-Text and Kaldi took 1.68 seconds (SD = 0.27) and 2.17
seconds (SD = 0.42), respectively, to recognize the keywords, whereas LipType and Silent command
took 3.14 seconds (SD = 0.39) and 1.97 seconds (SD = 0.34), respectively. The di�erences were
statistically signi�cant (�3,11 = 159.65, ? < .0001). The average accuracy rates for Google Speech-to-
Text and Kaldi were 97.91% (SD = 1.15) and 88.32% (SD = 5.11), respectively, whereas 87.58 (SD =
5.22) and 73.47% (SD = 7.33) for LipType and Silent command, respectively. The di�erences were
statistically signi�cant (�3,11 = 506.53, ? < .0001). Table 1 presents recognition time and accuracy
rates for all keywords with each method. Within the investigated models, we selected the relatively
best-performed models for speech and silent speech recognition: Google Speech-to-Text and Silent

1Source code: https://github.com/theiilab/Eye-Gaze-Pointing
2Dataset: https://www.theiilab.com/resources/Keywords_Data.zip
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command. Silent command was almost as fast as Google Speech-to-Text (1.97 vs. 1.68 seconds) but
was about 24% more error prone. However, this rate was recorded in a quiet room, while research
showed that the accuracy rate of speech drops by 45–55% in presence of a background noise (42–58
db) [89]. The performance of silent speech, in contrast, is una�ected by this. Besides, an ablation
study showed that the accuracy rate of the proposed model further improves with a much smaller
corpus or a larger training dataset. The model reached a 100% accuracy rate with 1 keyword and
close to 95% accuracy rate with 6 keywords, which are acceptable in the context of speech and
silent speech input [90]. In this work, we use 1 keyword: Select, during the Fitts’ law study, and the
6 most relevant keywords: Select, Left, Right, Top, Bottom, Close, in the menu selection study.

4 EYE TRACKING

This work uses the GazeCloudAPI for real-time eye-tracking using a webcam [36]. It tracks eyes in
three stages: facial features extraction, eyes features detection, and point of gaze estimation. The
process starts with capturing RGB color space images with a web camera and converting them to
grayscale. These images are then normalized with histogram equalization to enhance facial feature
accuracy [39]. Afterward, a Haar-like feature classi�er is used to classify the images into face and
non-face regions [122]. The classi�er further classi�es the face into subregions, such as the eyes,
the nose, the lips, etc. Once the eye region is detected, the system �rst identi�es the position of the
pupil by detecting the iris from the eye region. Then, locates the pupil as the center of the iris using
a Hough circle transform [65]. Finally, the point of gaze is estimated using the pupil location [37].
In an empirical evaluation [120], the API yielded 0.9◦, 1◦ accuracy on the G , ~ coordinates with a
Logitech Pro 9000 Webcam at 1600×1200, where participants could freely move their head. Note
that eye tracking accuracy is measured in angles, representing the deviation in degrees between
the actual and the predicted gaze directions. An average below 1.2◦ is considered to be a good
measurement of accuracy in free head conditions, while an accuracy below 0.8◦ is desired when
the head is �xed using a chinrest [120].

(a) The 2D Fi�s’ law task in ISO 9241-9
(b) A screenshot of the web application (� = 780,, =

140 pixels)

Fig. 4. (a) The target is highlighted in red. The arrows and the numbers demonstrate the sequence in which
the targets are selection. (b) The custom web application also highlights the intended target in red and uses
the same selection sequence as ISO 9241-9.

5 FITTS’ LAW PROTOCOL

Fitts’ law is a well-established method for evaluating target selection on computing systems [74].
In the 1990s, it was included in the ISO 9241-9 (revised: ISO 9241-411) standard for evaluating
non-keyboard input devices by using Fitts’ throughput as a dependent variable [113]. The most
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common multi-directional protocol evaluates target selection movements in di�erent directions.
The task is 2D with targets of width, equally spaced around the circumference of a circle (Fig. 4a).
Participants select the targets in a sequence moving across and around the circle, starting and
�nishing at the top target. Each movement covers an amplitude �, which is the diameter of the
layout circle. A trial is de�ned as one target selection task, whereas completing all tasks with a
given amplitude is de�ned as a sequence. Throughput cannot be calculated on a single trial because
a sequence of trials is the smallest unit of action in ISO 9241-9. Traditionally, the di�culty of each
trial is measured in bits using an index of di�culty (��), calculated as follows:

�� = ;>62 (
�

,
+ 1)

The movement time (") ) is measured in seconds for each trial, then averaged over the sequence
of trials. It is then used to calculate the performance throughput ()% ) in bits/second (bps) using the
following equation:

)% =

��

")

The revised ISO 9241-9 (9241-411) used here [51] measures throughput using an e�ective index
of di�cult ��4 , which is calculated from the e�ective amplitude �4 and the e�ective width,4 to
make sure that the real distance traveled form one target to the next is measured. It also takes into
e�ect how far the participants were from the target center.

)% =

��4

")
��4 = ;>62 (

�4

,4

+ 1)

The e�ective amplitude is the real distance travelled by the participants and the e�ective width is
calculated as follows, where (�G is the standard deviation of the selection coordinates projected
on the G-axis for all trials in a sequence. This accounts for any targeting errors by the participants,
assuming that they were aiming at the center of the targets.

,4 = 4.133 ∗ (�G

6 EXPERIMENTAL SYSTEM

We developed a custom web application3 with HTML5, CSS, PHP, and JavaScript for the Fitts’ law
experimental protocol (Section 5). It enables users to control a cursor with eye-gaze by translating
gaze position into G,~ coordinates of the cursor on the display. It uses the GazeCloudAPI for eye-
tracking with a webcam (Section 4). We used it instead of other APIs [92, 126] due to its robustness
[124]. The application uses the following free-hand target selection methods.

• Dwell. Users point at a target then �xate (or hold the sight) for 500 ms to select the target.
The threshold was picked based on studies identifying 500 ms as the most e�ective dwell
time for novice eye-gaze users [18, 73, 82].

• Speech Command (Google). Users point at a target then speaks the voice command Select
to select the target.

• Silent Speech Command. Users point at a target then silently speaks the command Select
(without vocalizing the word) to select the target.

7 USER STUDY 1: FITTS’ LAW

We conducted a Fitts’ law experiment to investigate the performance of di�erent hands-free
selection methods (dwell, speech, silent speech) with eye tracking.

3Based on an existing application: http://simonwallner.at/ext/�tts.
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7.1 Participants & Apparatus

Twelve volunteers participated in the user study. Their age ranged from 24 to 40 years (M = 29.01,
SD = 4.78). Four of them identi�ed themselves as women and eight as men. Four of them wore
corrective eyeglasses and one wore corrective contact lenses. One participant had experience
working with the MediaPipe Iris API, but none used eye tracking to interact with their computer
systems. Each of them received US $15 for volunteering in the study. We used the web application
described in Section 6 (Fig. 4b) and the apparatus described in Section 3.2.

Fig. 5. Three participants taking part in the first user study.

7.2 Design

The experiment was a 3 × 3 × 4 within-subjects design. The independent variables and the levels
were as follows:

• Selection method (Dwell, Speech, Silent Speech) counterbalanced
• Amplitude (260, 520, 780 pixels)
• Width (35, 70, 140, 220 pixels)

The three amplitudes were selected based on the minimum and maximum distance possible on
the experimental device’s 16′′ display. Likewise, the four widths were selected since 35 pixels is
one of the smallest widths used in prior eye tracking research [80], 70 pixels is the recommended
width in eye tracking applications [121], while targets with widths over 220 pixels are unrealistic.
The dependent variables in the experiment were as follows:

• Throughput (bps) as described in Section 5.
• Selection time (seconds) represents the average time users took to perform a selection task,
measured from the moment the cursor entered the target (including re-entries, when the
cursor mistakenly left the target, then re-entered) to the moment it was selected. This metric
does not include pointing time (seconds) that signi�es the time to move the cursor over a
target as all selection methods used the same eye tracking method for pointing.

• Error rate (%) signi�es the average percentage of incorrect target selections per trial (%),
where users performed a selection action outside the target.

7.3 Procedure

The study was conducted in a quiet room. Upon arrival, we explained the research and demonstrated
the application to the participants. They then signed an informed consent form and completed a
short demographics questionnaire. We then calibrated the eye tracking system for each participant
by using a 4-point calibration method. The display was located about 65–75 cm in front of the
participants’ eyes (Fig. 5), as recommended in eye tracking research [120]. After calibration, we
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enabled participants to practice with the application by using the three selection methods for ∼5
minutes. They could extend the practice period on request. Once familiar with the methods, they
started the study by performing point-select tasks by pointing at a target using eye tracking, then
selecting it using either dwell, speech, or silent speech. As per ISO 9241-411, the targets were
highlighted one-by-one clockwise for all levels, starting from the top target. The amplitude and
width values were selected randomly. As a target was selected, the next target was highlighted.
We did not instruct participants to �x their head, thus could freely move their heads during the
study. We enforced a 2-minute break after each four sequences and a 5-minute break after each
condition to avoid the e�ect of fatigue. Upon completion of the study, participants completed a
short questionnaire to rate their willingness to use and perceived physical and mental e�orts of the
methods on a 5-point Likert scale. All researchers involved in this study were fully vaccinated for
COVID-19, wore face covering, and maintained a 3′′ distance from the participants at all times.
Participants were pre-screened for COVID-19 symptoms during recruitment and on the day of the
study. They wore face coverings at all times, except for when taking part in the study. All study
devices and all surfaces were disinfected before and after each session. This protocol was approved
by the Institutional Review Board (IRB).

7.4 Results

A complete study session took about 60–80 minutes, including demonstration, questionnaires, and
breaks. A Shapiro-Wilk test revealed that the response variable residuals were normally distributed.
A Mauchly’s test indicated that the variances of populations were equal. Hence, we used a repeated-
measures ANOVA for all quantitative within-subjects factors (described in Section 7.2). We used a
Friedman test for the questionnaire data [7]. We did not identify any e�ects of the between-subjects
factors, namely age, gender, and the use of corrective eyeglasses or contact lenses.

(a) (b)

Fig. 6. Average throughput (bits/second) by (a) selection method and (b) selection method, amplitude, and
width. Error bars represent ±1 standard deviation (SD).

7.4.1 Throughput. An ANOVA identi�ed a signi�cant e�ect of selection method on throughput
(�2,22 = 2367.84, ? < .0001). Average throughput for dwell, speech, and silent speech were 4.34 (SD
= 1.79), 2.34 (SD = 0.68), and 2.59 bps (SD = 1.43), respectively (Fig. 6a). A Tukey-Kramer test found
the three selection methods signi�cantly di�erent from one another. There was also a signi�cant
e�ect of amplitude (�2,22 = 189.88, ? < .0001) and width (�3,33 = 487.72, ? < .0001). The method ×

amplitude × width interaction e�ect was also statistically signi�cant (�12,132 = 225.83, ? < .0001).
Fig. 6b illustrates average throughput by selection method, amplitude, and width.
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(a) Selection time (seconds) (b) Error rate (%)

Fig. 7. Average selection time and error rate by selection method. Error bars represent ±1 standard deviation
(SD).

7.4.2 Selection Time. An ANOVA identi�ed a signi�cant e�ect of selection method on selection
time (�2,22 = 1001.30, ? < .0001). Average selection time for dwell, speech, and silent speech were
1.04 (SD = 0.30), 1.32 (SD = 0.20), and 1.37 seconds (SD = 0.17), respectively (Fig. 7a).

7.4.3 Error Rate. An ANOVA identi�ed a signi�cant e�ect of selection method on selection time
(�2,22 = 3932.24, ? < .0001). Average error rate for dwell, speech, and silent speech were 31.84% (SD
= 8.15), 23.95% (SD = 8.38), and 20.31% (SD = 7.88), respectively (Fig. 7b).

(a) Willingness-to-use (b) Physical and mental e�ort

Fig. 8. Median willingness-to-use and physical and mental e�ort. Error bars represent ±1 standard deviation
(SD).

7.4.4 User Feedback. A Friedman test identi�ed a signi�cant e�ect of selection method on willing-
ness-to-use (j2 = 8.31, 3 5 = 2, ? < .05). However, no signi�cant e�ect was identi�ed on physical
and mental e�ort (j2 = 3.33, 3 5 = 2, ? = .11). Fig. 8 presents median willingness-to-use and
perceived physical and mental e�ort ratings of the three methods.

7.5 Discussion

Results con�rmed that target amplitude and width in�uence the selection methods in accordance
to the Fitts’ law (Fig. 6b), except for dwell’s unusual throughput for �:260 ×, :140, which we
identi�ed as an outlier. Dwell was the best performed selection method in terms of throughput. Its
4.34 bps throughput was 85% and 68% higher than speech and silent speech (2.34 and 2.59 bps),
respectively. However, it was also the most unreliable, which is re�ected in its average selection
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time (Fig. 7a) and error rate (Fig. 7b). Participants took on average 1.04 seconds to select targets with
dwell. Since the dwell time was set at 500 ms, this suggests that there were many target re-entries,
where the cursor left the target before selecting it, thus had to re-enter, forcing participants to
spend extra time with the method. Fig. 9 illustrates cursor traces from a random participant for
the three selection methods, where one can see that dwell required much more target re-entries
than speech and silent speech. Dwell also yielded a 33% and 57% higher error rates than speech
and silent speech, which suggests that participants frequently dwelled outside the targets. Dwell’s
unreliability had an impact on user preference. Participants were least willing to use the method
and found it to be the most physically and mentally demanding (Fig. 8). One participant (male, 28
years) commented, “Dwell was the most di�cult because it was causing eye fatigue”. This suggests
that dwell can be useful in short-term use, but is likely to a�ect user performance, preference,
and comfort in extended use. Silent speech was the second best performed selection method in
terms of throughput. A Tukey-Kramer test found its throughput to be signi�cantly better than
speech. Silent speech was also the most accurate. A Tukey-Kramer test identi�ed its error rate to be
signi�cantly lower than both dwell and speech (36% and 15% lower, respectively). Participants were
also willing to use the method the most on their computers. They found it slightly more physically
and mentally demanding than speech (Fig. 8b), but this e�ect was not statistically signi�cant. These
results identify silent speech as an e�ective selection method in eye-gaze pointing.

(a) Dwell (b) Speech (c) Silent speech

Fig. 9. Cursor trace examples for the three selection methods (�:520 ×, :70 pixels).

8 USER STUDY 2: SCREEN LOCATION

We conducted a user study to inform the design of the �nal study. Its purpose was to identify the
most e�ective screen areas for eye-gaze pointing, in terms of throughput, pointing time, and error
rate, which can essentially help designing more e�ective interactive systems for eye tracking.

8.1 Participants

Twelve volunteers (M = 27.75 years, SD = 4.11) participated in the second study (Fig. 10b). None of
them participated in the �rst study. Six of them identi�ed themselves as women and six as men.
Four of them wore corrective eyeglasses. None of them had experience with an eye-gaze-based
system. They all received US $15 for volunteering.

8.2 Apparatus, Design, & Procedure

The study used the apparatus described in Section 3.2. To investigate the most e�ective screen
areas, the 1792×1041 display area (excluding the dock and the menu bar) was divided into 12 equal
448×347 pixels zones (Fig. 10a). The application displayed circular targets (35 pixels in diameter)
at random locations in the zones for the participants to select using silent speech command. The
study used the following within-subjects design: 12 participants × 12 zones × 12 targets per zone
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(a) (b)

Fig. 10. (a) The twelve zones used in the second study and (b) two participants taking part in the study.

= 1,728 targets. The independent variable was “zone” and dependent variables were throughput,
pointing time, and error rate (Section 7.2). This study used the same procedure as the �rst study
(Section 7.3) except for the task. In this study, participants performed the point-select tasks by
pointing at a target using eye tracking then selecting the target using the silent speech command
Select. A sequence of trials consisted of 12 circular targets (35 pixels in diameter) per zone. The
targets were presented at random locations in the zones (Fig. 10b). Hence, all trials had the same
width (, ) but di�erent amplitudes (�). Upon completion of all trials, participants completed a short
questionnaire where they could rate the di�culty levels of the 12 zones on a 5-point Likert scale.

(a) Throughput (bps) (b) Pointing time (seconds) (c) Error rate (%)

Fig. 11. Average throughput, pointing time, and error rate per zone.

8.3 Results & Discussion

A complete study session took about 40–60 minutes, including demonstration, questionnaires, and
breaks. A Shapiro-Wilk test revealed that the response variable residuals were normally distributed.
A Mauchly’s test indicated that the variances of populations were equal. Hence, we used a repeated-
measures ANOVA for the quantitative within-subjects factors. We did not identify any e�ects of
the between-subjects factors, namely age, gender, and corrective eyeglasses.
An ANOVA identi�ed a signi�cant e�ect of zone on throughput (�11,121 = 4.37, ? < .0001). A

Tukey-Kramer test identi�ed three distinct groups: {1, 11, 12}, {4, 5, 7, 8, 9, 10}, and {2, 3, 6}, from
the worst to the best performed zones. There was also a signi�cant e�ect of zone on pointing time
(�11,121 = 8.93, ? < .0001). A Tukey-Kramer test identi�ed three distinct groups: {1, 10, 11, 12}, {2, 3,
4, 5, 8, 9}, and {6, 7}, from the slowest to the fastest performed zones. An ANOVA also identi�ed
a signi�cant e�ect on error rate (�11,121 = 4.16, ? < .0001). A Tukey-Kramer test identi�ed three
distinct groups: {9}, {1, 4, 5, 8, 10, 11}, and {2, 3, 6, 7}, from the least to the most accurate zones.
Fig. 11 illustrates these.
In summary, the study identi�ed the central zones {2, 3, 6, 7} as the most accurate and the

fastest. The top corners and bottom zones {1, 4, 9, 10, 12} were the most error prone and the
slowest. The remaining zones {5, 8, 11} performed moderately well. User responses to the post-
study questionnaire mirrored the quantitative data. We speculate, this is due to the increase in
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participants’ viewing angle when looking at the top corners and bottom zones. Prior work showed
that eye tracking systems achieve the best accuracy at narrow visual angles and even a slight
increase in visual angles can increase gaze errors signi�cantly [63]. Participants also expressed
their enthusiasm about the system. One participant (male, 29 years) wrote, “The technology felt
good. It will be helpful to disable people to simplify their life”. Another participant (female, 28 years)
commented, “This could be useful in self-checkout kiosk”.

9 MENU SELECTION WITH EYE-GAZE AND SILENT SPEECH

We designed a method for menu selection with silent speech and gaze pointing. It facilitates the
selection of small targets from a grid by adopting the target gravity metaphor from traditional
graphical user interfaces [11, 88] and using six silent speech commands for cursor positioning and
target selection. Target gravity uses a snap-to e�ect [88] that automatically moves the cursor to
a target’s center when it is within 10 pixels of the target, and then remains locked on the target
until the gaze path exceeds 10 pixels or the user silently speaks the release command. We used this
behavior because cursor drift and jitter during �xation due to involuntary eye movements causes
irritation and a�ects performance [83]. The 10 pixels threshold was used because it felt the most
natural in multiple lab trials. The method uses two silent commands to select and close/release
targets, and four commands for directional movements of the cursor (Table 2). Fig. 1 illustrates a
menu selection scenario with the proposed system.

Table 2. The six silent commands and corresponding actions used in the proposed menu section method.

Command Direction Action

Select Selects the current item

Right Horizontal
Moves the cursor to the right item. If there are no items on the right of the
current item, the cursor is moved to the �rst item in the menu

Left Horizontal
Moves the cursor to the left item. If there are no items on the left of the
current item, the cursor is moved to the last item in the menu

Top Vertical
Moves the cursor one item above the current item. If there are no items
above the current item, the cursor is moved to the last item in the menu

Bottom Vertical
Moves the cursor one item below the current item. If there are no items
below the current item, the cursor is moved to the �rst item in the menu

Close Unlocks the cursor by releasing target gravity

10 USER STUDY 3: MENU SELECTION

We conducted a study to compare the silent speech-based selection method with and without menu
selection commands.

10.1 Participants & Apparatus

Twelve volunteers took part in the study. Neither of them participated in the �rst study. Their age
ranged from 22 to 36 years (M = 28.25, SD = 4.63). Six of them identi�ed themselves as women
and six as men. Two of them wore corrective eyeglasses. None of them had experience with an
eye-gaze-based system. Each of them received US $15 for volunteering in the study. The study used
the apparatus described in Section 3.2.

10.1.1 Task Selection. We customized the web application to display four menus (one at a time)
categorizing di�erent types of animals, food, popular books, and famous people. Simple categories
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Fig. 12. Three participants taking part in the final user study.

were used to assure that the selection tasks do not require specialized knowledge. All categories had
�ve vertical menu items. The vertical sub-menus under the horizontal menus had either three, four,
or seven items. We did not use more than seven items per sub-menu to avoid memory overload
[78]. Fifteen random targets were selected per category: �ve with target distances between 2–5,
�ve between 6–7, and �ve between 8–12. Target distance signi�es the total number of horizontal
and vertical items before the target. Horizontal items are counted from left to right and vertical
items are counted from top to bottom since research revealed that users tend to scan items from
left-to-right and top-to-bottom [17]. The menus were designed following the macOS guidelines
[1] to provide a familiar look-and-feel. Each menu item was 150×38 pixels. Current items were
highlighted in a blue font (Fig. 13) and selected items were highlighted in a dark gray background
(Fig. 1).

Fig. 13. Examples of two menus categorizing di�erent types of animals and famous people.

10.2 Design & Procedure

The study used the following within-subjects design: 12 participants × 2 methods (command,
menu command, counterbalanced) × 2 unique menus per method × 15 tasks per menu = 720 menu
selection tasks. The independent variable was “method” and dependent variables were as follows:

• Task completion time (seconds) represents the average time users took to perform a menu
selection task.

• Look-back rate (%) represents the average percentage of times users entered a correct
sub-menu, then left to explore the other sub-menus. This occurred when users were unable
to locate a target despite entering the correct sub-menu, thus explored other sub-menus to
�nd the target.

• Error rate (%) signi�es the average percentage of incorrect menu selections per method (%),
where users either selected an incorrect item or performed a selection task outside the menu.
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The study used the same procedure as the previous studies (Section 7.3). During practice, partici-
pants selected two items using both methods (with and without menu commands) from a menu
that was not used in the study. Once they were familiar with the methods, they started the main
study, where they performed 15 target selection tasks per menu category with both methods. In the
menu command condition, participants used the commands presented in Table 2 for navigation and
selection. In the command condition, they used eye-gaze exclusively for positioning the cursor and
the “Select” command to select a target. Tasks with di�erent distances were presented on the screen
in a random order. Considering some participants could be more familiar with the categories than
the others, the application also displayed the complete target path. For example, for the scenario
depicted in Fig. 1, the application displayed the task as “Select Veggies > Broccoli”, indicating
that the participants �rst have to go to the “Veggies” sub-menu then select “Broccoli”. Two menu
categories were assigned to each method in a counterbalanced order. We did not use the same menu
categories with both methods to avoid any potential e�ects of knowledge (using the knowledge
acquired in one condition to achieve the goals in another). Participants were instructed to select the
targets as fast and accurate as possible. Error correction was not required. Timing started from the
moment they lifted their gaze from the presented task to the moment a sub-menu item was selected.
We enforced a 2-minute break after each menu category and a 5-minute break after each condition
to avoid the e�ect of fatigue. Upon completion of the study, participants completed a custom and the
NASA-TLX questionnaire [43] to rate the methods’ perceived performance, usability, and workload.

10.3 Results

A complete study session took about 40–60 minutes, including demonstration, questionnaires, and
breaks. A Shapiro-Wilk test revealed that the response variable residuals were normally distributed.
A Mauchly’s test indicated that the variances of populations were equal. Hence, we used a repeated-
measures ANOVA for the quantitative within-subjects factors. We used a Wilcoxon Signed-Rank
test for the questionnaire data. [7] We did not identify any e�ects of the between-subjects factors,
namely age, gender, and the use of corrective eyeglasses.

(a) Task completion time (seconds) (b) Error rate (%) (c) Look-back rate (%)

Fig. 14. Average task completion time, error rate, and look-back rate for the two investigated methods. Error
bars represent ±1 standard deviation (SD).

10.3.1 Task Completion Time. An ANOVA identi�ed a signi�cant e�ect of method on task comple-
tion time (�1,11 = 18.84, ? < .005). Average task completion time for command and menu command
were 5.51 (SD = 1.09) and 5.02 seconds (SD = 1.07), respectively (Fig. 14a).

10.3.2 Error & Look-Back Rates. An ANOVA identi�ed a signi�cant e�ect of method on error rate
(�1,11 = 265.30, ? < .0001). Average error rate for command and menu command were 51.11% (SD =
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50.06) and 1.94% (SD = 13.83), respectively (Fig. 14b). An ANOVA also identi�ed a signi�cant e�ect
on look-back rate (�1,11 = 1113.35, ? < .0001). Average look-back rate for command and menu
command were 191.94% (SD = 143.25) and 5.00% (SD = 24.24), respectively (Fig. 14c).

(a) Usability questionnaire (b) NASA-TLX questionnaire

Fig. 15. Median willingness-to-use and physical and mental e�ort of the examined selection methods. Error
bars represent ±1 standard deviation (SD).

10.3.3 User Feedback. AWilcoxon Signed-Rank test identi�ed a signi�cant e�ect of method on
perceived speed (I = −2.45, ? < .05), perceived accuracy (I = −2.16, ? < .05), and ease-of-use
(I = −2.22, ? < .05). However, there was no signi�cant e�ect on learnability (I = −1.06, ? = .29)
and willingness-to-use (I = −1.3, ? < .19). Fig. 15a presents median perceived performance and
usability ratings of both methods.

10.3.4 Perceived Workload. A Wilcoxon Signed-Rank test identi�ed a signi�cant e�ect of method
on mental demand (I = −2.61, ? < .01), physical demand (I = −2.82, ? < .01), temporal demand
(I = −2.83, ? < .01), performance (I = −2.62, ? < .01), e�ort (I = −2.95, ? < .005), and frustration
(I = −2.98, ? < .005). Fig. 15b presents median perceived workload ratings of both methods.

10.4 Discussion

Eye-gaze with menu command yielded about 9% faster task completion time than the baseline (the
method without menu command). Most impressively, it reduced error rates by 96%. The baseline’s
51% error rate (compared to menu command’s 2%) suggests that roughly one in every two targets
were incorrectly selected (Fig. 14b). Menu command also yielded 97% lower look-back rate than the
baseline (Fig. 14c). The baseline yielded a 192% look-back rate, which suggests that most of the
times participants were not con�dent that they were in the correct sub-menu, thus left to explore
the other sub-menus. This behavior is particularly interesting since the experimental tasks did not
require participants to explore the sub-menus to locate a target, instead displayed the exact path.
The fact that participants did not look-back as much while using the menu command suggests that
it increased their con�dence in performing the tasks. A deeper analysis failed to identify an e�ect
of horizontal and vertical (sub-)menu items on performance. This contradicts a prior work that
found horizontal pointing to be about 18% more error prone than vertical pointing [64]. We also
failed to identify any relationship between target distance and performance. This contradicts a
prior �nding that users’ response time is an approximately linear function of serial position in the
menu [87]. Our �ndings, however, are in line with a follow-up work that failed to replicate Nilsen
[87]’s �ndings and argued that visual search and cursor movement strategies employed by actual
users cannot be characterized easily [17].
Participants perceived the proposed method signi�cantly faster and more accurate than the

baseline (Fig. 15a). A participant (female, 25 years) commented, “I think with commands [gaze-based
menu selection] is more reliable”. They also found the method signi�cantly easier to use. They felt
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that both methods were easy to learn. Interestingly, their ratings were also comparable in terms of
willingness to use. We believe, the exclusion of error correction from the study protocol in�uenced
this—their response could have been di�erent if they were forced to correct all incorrect selections.
Participants found the proposed method mentally, physically, and temporally less demanding than
the baseline (Fig. 15b). They also felt that the method was better performed, required less e�ort,
and caused less frustration than the baseline.

10.5 Limitations

Although the proposed approach is aimed at people that are unable use the hands due to a permanent
or situational impairment, the studies recruited non-disabled people. While it is very likely that
the quantitative �ndings are generalizable to the target population [130], it cannot be claimed
with utmost certainty that the subjective feedback are also generalizable as people with disabilities
might prefer a di�erent method more due to lived experiences. Another limitation is that the study
did not explore the e�ects of error correction on performance and preference. We decided not to
force error correction in the study as it would have substantially increased the task completion
time of the baseline condition, causing much frustration among the participants.

11 KEY FINDINGS AND DESIGN RECOMMENDATIONS

Below, we summarize the key �ndings of this work and make design recommendations.

• Silent command is a fast and e�ective alternative to dwell and speech-based selection methods
in eye-gaze pointing, especially when the vocabulary is relatively small. We recommend
designers to present a small number of options at a time to limit the total number of possible
user responses to ten or less.

• We recommend against using dwell for tasks that require using the eyes for extended period
of time since it tend to a�ect both user performance, preference, and comfort.

• When designing eye-gaze-based interactive systems, we recommend placing the most impor-
tant and frequently used interactive elements at the center or around the two sides of the
display. Avoiding the top corners and the bottom is recommended as they are usually the
slowest and the most error prone.

• We recommend using silent command for menu selection with eye-gaze pointing as it is a
more private and secure option and signi�cantly increases users’ con�dence in selecting
the correct option. Besides, vertical and horizontal menus are equally e�ective in eye-gaze
pointing with silent speech.

12 CONCLUSION

In this work, we systematically studied the feasibility of using silent speech as a hands-free selection
method in eye-gaze pointing. First, we proposed a stripped-down image-based model to recognize
silent speech commands. An evaluation revealed that the model can recognize ten keywords almost
as fast as a state-of-the-art speech recognition model. Second, we compared the method with
other hands-free selection methods, namely dwell and speech, in a Fitts’ law study, where both eye
tracking and silent speech recognition used a webcam. Results showed that speech and silent speech
are comparable in throughput and selection time, but the latter is signi�cantly more accurate than
the other methods. Besides, participants were signi�cantly more enthusiastic about using silent
speech than the other methods. We then conducted a follow-up study, which revealed that target
selection around the center of a display is signi�cantly faster and more accurate, while around the
top corners and the bottom are slower and error prone. Finally, we presented a new method for
selecting menu items with eye-gaze and silent speech commands. In a comparative evaluation, the
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method was signi�cantly faster and more accurate than the baseline. Participants also found the
method signi�cantly better in terms of performance, usability, and perceived workload.

13 FUTURE DIRECTIONS

In the future, we will extend the work to support more than ten silent speech commands. We will
also investigate the possibility of using targeted commands, where the user silently speaks a speci�c
menu item to select it rather than using directional commands. Finally, we will explore di�erent
error correction mechanisms to enhance the usability of the method. We envision numerous
opportunities for future extension of this work. The proposed mouth aspect ratio-based model
could be trained with people with muteness and speech disorders to enable hands-free interaction
with computer systems using a set of custom commands or even lip gestures. The model could also
be used with conversational agents, e.g., chatbots. Since they usually ask close-ended questions to
limit the number of possible answers, the system has to disambiguate the input from a small number
of samples at a time, comparable to the menu selection concept presented here. Eye tracking and
silent commands could also be used in other application domains, such as in virtual reality or in
automotive user interfaces.
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